您当前所在位置: 首页 > 学者

高天明

  • 27浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 35下载

  • 0评论

  • 引用

期刊论文

CHANGES IN MEMBRANE PROPERTIES OF CA1 PYRAMIDAL NEURONS AFTER TRANSIENT FOREBRAIN ISCHEMIA IN VIVO

高天明T.M. GAO* W.A. PULSINELLI and Z.C. XU

Neuroscience Vol. 90, No.3, pp. 771-780, 1999,-0001,():

URL:

摘要/描述

We have previously identified three distinct populations of CA1 pyramidal neurons after reperfusion based on differences in synaptic response, and named these late depolarizing postsynaptic potential neurons (enhanced synaptic transmission), non-late depolarizing postsynaptic potential and small excitatory postsynaptic neurons (depressed synaptic transmission). In the present study, spontaneous activity and membrane properties of CA I neurons were examined up to 48 h following-14 min ischemic depolarization using intracellular recording and staining techniques in vivo. In comparison with preis-chemic properties, the spontaneous firing rate and the spontaneous synaptic activity of CA1 neurons decreased significantly during reperfusion; spontaneous synaptic activity ceased completely 36-48h alter reperfusion, except for a low level of activity which persisted in non-late depolarizing postsynaptic potential neurons. Neuronal hyperactivity as indicated by increasing firing rate was never observed in the present study. The membrane input resistance and time constant decreased significantly in late depolariz-ing postsynaptic potential neurons at 24-48h reperfusion. In contrast, similar changes were not observed in non-late depolarizing postsynaptic potential neurons. The rheobase, spike threshold and spike frequency adaptation in late depolarizing postsynaptic potential neurons increased progressively following reperfu-sion. Only a transient increase in rheobase and spike threshold was detected in non-late depolarizing postsynaptic potential neurons and spike frequency adaptation remained unchanged in these neurons. The amplitude of fast afterhy perpolarization increased in all neurons after reperfusion, with the smallest increment in non-late depolarizing postsynaptic potential neurons. Small excitatory postsynaptic potential neurons shared similar changes to those of late depolarizing postsynaptic potential neurons. These results suggest that the enhancement and depression of synaptic transmission following ischemia are probably due to changes in synaptic efficacy rather than changes in intrinsic membrane properties. The neurons with enhanced synaptic transmission following ischemia are probably the degenerating neurons, while the neurons with depressed synaptic transmission may survive the ischemic insult.

【免责声明】以下全部内容由[高天明]上传于[2006年06月17日 01时10分27秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果