您当前所在位置: 首页 > 学者

张立新

  • 63浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 103下载

  • 0评论

  • 引用

期刊论文

cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients

张立新Zheng Xu Li-Xin Zhang Jun-Dong Zhang Yong-Bing Cao Yuan-Yuan Yu De-Jun Wang Kang Ying Wan-Sheng Chen Yuan-Ying Jiang

International Journal of Medical Microbiology 296 (2006) 421-434,-0001,():

URL:

摘要/描述

Fungi have emerged as the fourth most common pathogens isolated in nosocomial bloodstream infections, and Candida albicans is the most common human fungal pathogen. Only a few antibiotics are effective in the treatment of fungal infections. In addition, the repetition and lengthy duration of fluconazole therapy has led to an increased incidence of azole resistance and treatment failure associated with C. albicans. To investigate the mechanism of drug resistance and explore new targets to treat clinically resistant fungal pathogens, we examined the large-scale gene expression profile of two sets of matched fluconazole-susceptible and -resistant bloodstream C. albicans isolates from bone marrow transplanted (BMT) patients for the first time by microarray analysis. More than 198 differentially expressed genes were identified and they were confirmed and validated by RT-PCR independently. Not surprisingly, the resistant phenotype is associated with increased expression of CDR mRNA, as well as some common genes involved in drug resistance such as CaIFU5, CaRTA2 and CaIFD6. Meanwhile, some special functional groups of genes, including ATP binding cassette (ABC) transporter genes (IPF7530, CaYOR1, CaPXA1), oxidative stress response genes (CaALD5, CaGRP1, CaSOD2, IPF10565), copper transport and iron mobilization-related genes (CaCRD1/2, CaCTR1/2, CaCCC2, CaFET3) were found to be differentially expressed in the resistant isolates. Furthermore, among these differentially expressed genes, some co-regulated with CaCDR1, CaCDR2 and CaIFU5, such as CaPDR16 and CaIFD6, have a DRE-like element and may interact with TAC1 in the promoter region. These findings may shed light on mechanisms of azole resistance in C. albicans and clinical antifungal therapy.

【免责声明】以下全部内容由[张立新]上传于[2007年11月18日 19时18分49秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果