您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 200812-1044
论文题目 基于因子分析的BP神经网络在微孔化合物定向合成中的应用
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

基于因子分析的BP神经网络在微孔化合物定向合成中的应用

首发时间:2008-12-31

霍卫峰 1    李激扬 1    于吉红 1    徐如人 1   
  • 1、吉林大学无机合成与制备化学国家重点实验室

摘要:数据挖掘可以从大量数据中提取出有价值的信息,在化学领域中BP神经网络是一个重要的挖掘工具。针对微孔晶体化合物的定向合成问题,本文提出了先利用因子分析的方法对数据进行预处理,抽取公共因子,然后再建立神经网络的挖掘过程模式。测试结果表明,该方法极大的缩减了数据规模,并且明显地提高了定向合成预测的准确率。这对微孔化合物的定向合成研究有一定的指导意义。

关键词: 数据挖掘 BP网络 因子分析 微孔化合物 定向合成

For information in English, please click here

Application of BP Neural Network Based on Factor Analysis on Rational Synthesis of Microporous Materials

Huo Weifeng 1    Li Jiyang 1    Yu Jihong 1    Xu Ruren 1   
  • 1、State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,Jilin University, ChangChun (130012)

Abstract:Data mining can discover valuable information from a large amount of data. As a useful data mining technique, BP neural network is an important tool in the area of chemistry. This work presents a new mode of data mining process in which the pretreatment by factor analysis was used to reduce the redundant attributes and then the BP neural network built with these factors as input was used to predict the type of the products. The application of such method on the analysis of the synthesis data of aluminiumphosphates shows good predicting capacity. This work will further assist in rational synthesis of microporous materials.

Keywords: Data mining BP neural network Factor analysis Microporous materials Rational synthesis

Click to fold

点击收起

论文图表:

引用

导出参考文献

.txt .ris .doc
霍卫峰,李激扬,于吉红,等. 基于因子分析的BP神经网络在微孔化合物定向合成中的应用[EB/OL]. 北京:中国科技论文在线 [2008-12-31]. http://www.paper.edu.cn/releasepaper/content/200812-1044.

No.2717837970112307****

同行评议

共计0人参与

评论

全部评论

0/1000

勘误表

基于因子分析的BP神经网络在微孔化合物定向合成中的应用