您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 200907-444
论文题目 卡罗需-库恩-塔克条件判断约束极值点的应用方法
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

卡罗需-库恩-塔克条件判断约束极值点的应用方法

首发时间:2009-07-21

李春明 1   
  • 1、中国石油大学

摘要:卡罗需-库恩-塔克(KKT)条件作为判断最优点是否为约束极值点的依据,在优化算法中非常重要。本文针对数值算法中遇到的几种情况提出了该条件的应用方法,给出了程序流程图。在运用该条件前,须剔除起作用约束中的冗余约束。对于起作用约束数大于维数的情况,须取所有基本梯度组进行检查,只要一组的拉格朗日乘子均非负,则考察点满足KKT条件。对于起作用约束数小于维数的情况,须取部分方程求出拉格朗日乘子,再用其它方程检验。以实例说明了该应用方法的计算步骤。

关键词: 优化方法 KKT条件 冗余约束 约束极值点

For information in English, please click here

Applied arithmetic of Karush-Kuhn-Tucker conditions on judging the restriction extremum point

Li Chunming 1   
  • 1、College of Mechanical and Electronic Engineering in China University of Petroleum, Dongying 257061, Shandong Province, China

Abstract:As the foundation of judging the optimal point is whether the extremum point or not, Karush-Kuhn-Tucker conditions play an important place in optimal arithmetic. The applied arithmetic and program flow chart of three situations are given. The redundancy of working restrictions should be eliminated before computing the KKT conditions. For the number of working restriction greater than the number of dimension, all basic grads groups should be checked. If only one group Lagrangian multipliers are all un-negative, the studied point meets the KKT conditions. For the number of working restriction less than the number of dimension, the Lagrangian multiplier get from some equations and then use in testing other equations. The computing steps of proposed arithmetic are shown by two examples.

Keywords: optimal design Karush-Kuhn-Tucker conditions redundancy restriction restriction extrmum

Click to fold

点击收起

论文图表:

引用

导出参考文献

.txt .ris .doc
李春明. 卡罗需-库恩-塔克条件判断约束极值点的应用方法[EB/OL]. 北京:中国科技论文在线 [2009-07-21]. http://www.paper.edu.cn/releasepaper/content/200907-444.

No.3397410486212481****

同行评议

共计0人参与

评论

全部评论

0/1000

勘误表

卡罗需-库恩-塔克条件判断约束极值点的应用方法