煤矿区塌陷地积水提取的尺度效应与决策级融合研究
首发时间:2012-02-10
摘要:利用遥感影像提取矿区塌陷地积水是煤矿区地质环境监测和调查的有效途径。如何选择煤矿区塌陷地积水提取的最佳尺度、提高识别和提取的精度等一直是应用中的难点。本文基于尺度效应和决策级融合的思想,利用ALOS多光谱数据、ASTER可见光近红外数据以及CBERS多光谱数据对试验区塌陷地积水进行提取。试验结果表明,针对本文研究区而言,单一数据源中,ASTER可见光近红外数据所对应的15米空间分辨率是提取矿区塌陷地积水的最佳尺度;基于投票法的ALOS和ASTER数据组合是决策级融合中的最佳融合策略。
For information in English, please click here
Study on scale effect and decision fusion of coal mining collapse seeper extraction
Abstract:Using remote sensing imagery to extract the coal mining collapse seeper is an effective way of geological environment monitoring and investigation. Extracting coal mining collapse seeper from remotely sensed images are often faced with some problems in application, such as the choose of optimal scale, the improve of recognition and extraction precision et al. Based on the thought of scale effect and decision fusion, using the ALOS multi-spectral data, ASTER VNIR data and CBERS multi-spectral data to extract the mining collapse seeper in study area. According to the mining area, the experimental results show that: for the single data source, the optimal scale extraction is the ASTER VNIR data corresponding to the spatial resolution of 15 meters; the voting method that based on the ALOS and ASTER data combination is the best fusion strategy in decision level fusion.
Keywords: remote sensing coal mining collapse seeper scale effect decision fusion
论文图表:
引用
No.****
同行评议
共计0人参与
勘误表
煤矿区塌陷地积水提取的尺度效应与决策级融合研究
评论
全部评论