基于Adaboost和卷积神经网络的人脸检测方法对比分析
首发时间:2016-12-30
摘要:本人脸检测一直是计算机视觉中研究最多的主题之一。基于Adaboost和基于卷积神经网络(Convolutonal Nenural Networks,CNN)的人脸检测一直是计算机视觉中研究最多的主题之一。关本文实现并比较了目前最常用到的两类面部检测技术--基于Adaboost的人脸检测和基于CNN的人脸检测,分别从检测流程、具体检测算法及检测性能这三个部分对两种人脸检测方法进行对比分析,然后分别给出了这两种人脸检测方法的实用性,最后提出了人脸检测中存在的主要问题集其发展趋势。
For information in English, please click here
Contrastive Analysis of Face Detection Methods Based on Adaboost and CNN
Abstract:Face detection has been one of the most studied topics in computer vision. This paper realizes and compares two types of face detection technologies, which are the longest used - face detection based on Adaboost and face detection based on Convolution Neural Network (CNN), respectively from the detection process, the specific detection algorithm and detection performance of the three parts of these two methods of face detection were compared, and then were given the applicability of these two kinds of face detection methods, and finally put forward the main problems in face detection and its developmentContrastive Analysis of Face Detection Methods Based on Adaboost and Convolution Neural Network trend .
Keywords: Adaboost CNN face detection
基金:
论文图表:
引用
No.4715542117709314****
同行评议
共计0人参与
勘误表
基于Adaboost和卷积神经网络的人脸检测方法对比分析
评论
全部评论