您当前所在位置: 首页

论文收录信息

论文编号 201806-52
论文题目 一种基于梯度提升回归树的系外行星宜居性预测方法
文献类型
收录期刊

上传封面

中文期刊 英文期刊

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

中文专著 英文专著

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

中文译著 英文译著

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

中文论文集 英文论文集

编者 . 论文集名称(中文) [c].

出版地 出版社 出版年-

编者 . 论文集名称(英文) [c].

出版地 出版社 出版年-

上传封面

中文文献 英文文献

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

中文文献 英文文献

文题(中文)

文题(英文)

出版地

出版社, 出版日期--

上传封面

中文文献 英文文献

文题(中文)

文题(英文)

出版地

出版社, 出版日期--

后印本*

(请提交PDF文档)

一种基于梯度提升回归树的系外行星宜居性预测方法

引用

复制文本

导出参考文献

.txt .ris .doc

朱维军

ZHU Weijun(1976-), male, associate professor, research interest include AI and its application

王鑫

发送私信

发送给朱维军

郑州大学信息工程学院,郑州450001

摘要:系外行星的宜居性是近年来探索宇宙的一个热点研究课题,机器学习为系外行星宜居性分类提供了一种可行的手段。然而,现有的宜居性分类效果面临严重不足与局限。为此,给出一种基于梯度提升回归树的系外行星宜居性分类/预测方法。首先,使用梯度提升回归树算法对系外潜在宜居行星与非宜居行星的相关物理学与天文学数据集进行训练;然后,利用训练好的模型对相关测试集进行预测。仿真实验结果表明,新方法在测试集上的预测准确率高达100%。

关键词: 人工智能 梯度提升回归树 系外行星 宜居性 二分类

图表:

同行评议

未申请同行评议

评论

评论一下

全部评论
评论