您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 201903-378
论文题目 基于组合模型的轨道质量指数预测
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

基于组合模型的轨道质量指数预测

首发时间:2019-03-29

姚亚峰 1   

姚亚峰(1992-),男,硕士研究生,主要研究方向:大数据技术与智能信息处理

肖丁 1   

肖丁(1966-),男,讲师,主要研究方向:软件工程、数据分析及建模

  • 1、北京邮电大学计算机学院,北京 100876

摘要:轨道质量指数(Track Quality Index,TQI)反映了单元区段内轨道几何不平顺的整体情况,是我国铁路工务部门指导线路养护维修最重要的指标。为了准确地预测TQI发展趋势,本文提出一种基于非等时距加权灰色模型和循环神经网络相结合的TQI预测方法。首先,使用优化后的非等时距加权GM(1,1)模型对TQI的整体变化趋势进行预测;然后,使用循环神经网络(Recurrent Neural Network,RNN)对TQI变化的随机性进行学习和预测;最后,将两部分预测值之和作为TQI变化情况的短期预测结果。实验结果表明:1)优化后的非等时距加权GM(1,1)模型的预测精度,受个别TQI值浮动的影响显著降低;2)和现有预测模型相比,本文提出的预测精度有了显著提升。

关键词: 计算机应用技术 轨道质量指数 灰色模型 循环神经网络

For information in English, please click here

Prediction of Track Quality Index Based on Combined Model

YAO Yafeng 1   

姚亚峰(1992-),男,硕士研究生,主要研究方向:大数据技术与智能信息处理

XIAO Ding 1   

肖丁(1966-),男,讲师,主要研究方向:软件工程、数据分析及建模

  • 1、School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876

Abstract:The Track Quality Index(TQI) reflects the degree of dispersion of the geometrical irregularity of the track in the unit section. It is the most important indicator for the maintenance and repair of the line by the railway engineering department of China. In order to accurately predict the development trend of TQI, this paper proposes a TQI prediction method based on non-equal interval weighted grey model and recurrent neural network. Firstly, the overall trend of TQI is predicted using the optimized non-equal interval weighted GM(1,1) model. Then, the randomness of TQI changes is studied and predicted using Recurrent Neural Network (RNN). Finally, the sum of the two predictions is used as the short-term prediction of TQI changes. The experimental results show that: 1) The effect of individual TQI value fluctuations on prediction accuracy of the optimized gray model is significantly reduced;2) Compared with the existing prediction models, the prediction accuracy proposed in this paper there has been a significant improvement.

Keywords: Technology of Computer Application Track Quality Index Grey Model Recurrent Neural Network

Click to fold

点击收起

基金:

论文图表:

引用

导出参考文献

.txt .ris .doc
姚亚峰,肖丁. 基于组合模型的轨道质量指数预测[EB/OL]. 北京:中国科技论文在线 [2019-03-29]. http://www.paper.edu.cn/releasepaper/content/201903-378.

No.****

同行评议

共计0人参与

评论

全部评论

0/1000

勘误表

基于组合模型的轨道质量指数预测