您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 202001-134
论文题目 基于层次注意力机制的远程监督关系抽取算法研究
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

基于层次注意力机制的远程监督关系抽取算法研究

首发时间:2020-01-29

陈元昆 1    刘建毅 1   

通信作者:刘建毅(1980-),男, 副教授,主要研究方向:数字内容安全,智能信息处理,数据挖掘。E-mail:liujy@bupt.edu.cn

  • 1、北京邮电大学网络空间安全学院,北京  100876

摘要:远程监督机制由于其使用机器自动标注数据,能减少大量标注人力的优点,逐渐成为了知识图谱构建中关系抽取任务的主要手段。目前,如何能够较好的提取句子特征,为句子分类(关系抽取)提供良好的分类依据,成为了远程监督领域的一个研究课题。为了解决这个问题,本文采用了称为层次注意力机制的网络结构,该网络结构将注意力机制组织为层次结构,以更好地应对数据噪声,捕获句子的特征。本文使用注意力机制作为句子和句袋这两个层次特征的主要的编码器,构建了一个抗噪能力较强的远程监督机制的关系抽取器。实验表明,该模型在捕获句子特征、增强泛化能力方面超过了现有模型。

关键词: 深度学习\ 自然语言处理 \ 知识图谱 \ 关系抽取\ 注意力机制\ 远程监督

For information in English, please click here

Distantly Supervised Relation Extraction with Layered Attention Mechanism

CHEN Yuankun 1    LIU Jianyi 1   

通信作者:刘建毅(1980-),男, 副教授,主要研究方向:数字内容安全,智能信息处理,数据挖掘。E-mail:liujy@bupt.edu.cn

  • 1、School of Cyberspace Security, Beijing University of Posts and Telecommunications , Beijing 100876

Abstract:Distant Supervision has gradually become a main method in Knowladgegraph construction due to it reduced the manpower of annotating data because it uses machines to automatically annotate data. At present, how to better extract sentence features and provide good classification basis for sentence classification (relation extraction) has become a research topic in the field of distant supervision. To solve this problem, this paper uses a network structurecalled the hierarchical attention mechanism, which organizes the attention mechanism into a hierarchical structure to better deal with data noise and capture the characteristics of sentences. In this paper, attention mechanism is used as the main encoder of two levels of features: sentence levle and sentence bag level, and a relational extractor with strong anti-noise ability and distant supervision mechanism is constructed. Experiments show that the model outperforms existing models in capturing sentence features and enhancing generalization capabilities.

Keywords: Deep learning, Natural Language Processing, Knowladge Graph, Relation Extraction, Attention Mechanism, Distant Supervision

Click to fold

点击收起

基金:

论文图表:

引用

导出参考文献

.txt .ris .doc
陈元昆,刘建毅. 基于层次注意力机制的远程监督关系抽取算法研究[EB/OL]. 北京:中国科技论文在线 [2020-01-29]. http://www.paper.edu.cn/releasepaper/content/202001-134.

No.****

动态公开评议

共计0人参与

动态评论进行中

评论

全部评论

0/1000

勘误表

基于层次注意力机制的远程监督关系抽取算法研究