您当前所在位置: 首页 > 首发论文
动态公开评议须知

1. 评议人本着自愿的原则,秉持科学严谨的态度,从论文的科学性、创新性、表述性等方面给予客观公正的学术评价,亦可对研究提出改进方案或下一步发展的建议。

2. 论文若有勘误表、修改稿等更新的版本,建议评议人针对最新版本的论文进行同行评议。

3. 每位评议人对每篇论文有且仅有一次评议机会,评议结果将完全公示于网站上,一旦发布,不可更改、不可撤回,因此,在给予评议时请慎重考虑,认真对待,准确表述。

4. 同行评议仅限于学术范围内的合理讨论,评议人需承诺此次评议不存在利益往来、同行竞争、学术偏见等行为,不可进行任何人身攻击或恶意评价,一旦发现有不当评议的行为,评议结果将被撤销,并收回评审人的权限,此外,本站将保留追究责任的权利。

5. 论文所展示的星级为综合评定结果,是根据多位评议人的同行评议结果进行综合计算而得出的。

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

勘误表

上传勘误表说明

  • 1. 请按本站示例的“勘误表格式”要求,在文本框中编写勘误表;
  • 2. 本站只保留一版勘误表,每重新上传一次,即会覆盖之前的版本;
  • 3. 本站只针对原稿进行勘误,修改稿发布后,不可对原稿及修改稿再作勘误。

示例:

上传后印本

( 请提交PDF文档 )

* 后印本是指作者提交给期刊的预印本,经过同行评议和期刊的编辑后发表在正式期刊上的论文版本。作者自愿上传,上传前请查询出版商所允许的延缓公示的政策,若因此产生纠纷,本站概不负责。

发邮件给 王小芳 *

收件人:

收件人邮箱:

发件人邮箱:

发送内容:

0/300

论文收录信息

论文编号 202001-81
论文题目 基于多次随机映射和EM算法的异常流量检测
文献类型
收录
期刊

上传封面

期刊名称(中文)

期刊名称(英文)

年, 卷(

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

书名(中文)

书名(英文)

出版地

出版社

出版年

上传封面

编者.论文集名称(中文) [c].

出版地 出版社 出版年-

编者.论文集名称(英文) [c].

出版地出版社 出版年-

上传封面

期刊名称(中文)

期刊名称(英文)

日期--

在线地址http://

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

上传封面

文题(中文)

文题(英文)

出版地

出版社,出版日期--

英文作者写法:

中外文作者均姓前名后,姓大写,名的第一个字母大写,姓全称写出,名可只写第一个字母,其后不加实心圆点“.”,

作者之间用逗号“,”分隔,最后为实心圆点“.”,

示例1:原姓名写法:Albert Einstein,编入参考文献时写法:Einstein A.

示例2:原姓名写法:李时珍;编入参考文献时写法:LI S Z.

示例3:YELLAND R L,JONES S C,EASTON K S,et al.

上传修改稿说明:

1.修改稿的作者顺序及单位须与原文一致;

2.修改稿上传成功后,请勿上传相同内容的论文;

3.修改稿中必须要有相应的修改标记,如高亮修改内容,添加文字说明等,否则将作退稿处理。

4.请选择DOC或Latex中的一种文件格式上传。

上传doc论文   请上传模板编辑的DOC文件

上传latex论文

* 上传模板导出的pdf论文文件(须含页眉)

* 上传模板编辑的tex文件

回复成功!


  • 0

基于多次随机映射和EM算法的异常流量检测

首发时间:2020-01-14

张凯宁 1   

张凯宁(1994-),硕士研究生,网络安全

辛阳 1   

辛阳(1977-),教授、博导,网络安全

  • 1、北京邮电大学网络空间安全学院 100876

摘要:针对传统异常检测算法实时性差、正确识别率低且误判率高等问题,本文提出一种多次随机映射以及无监督聚类算法相组合的改良算法。利用随机映射进行网络数据包的汇聚,以获取待测对象的时间序列;对各流量序列进行EM聚类检测得到多个待定异常集;对待定异常集进行交集操作,从中得出最终异常对象集。实验表明,改进算法具有较高的准确率和低误判率,能够有效检测网络中的异常数据。

关键词: 网络流量 异常检测 随机映射 聚类

For information in English, please click here

Network Traffic Detection Based on Multiple Random Projections and EM

ZHANG Kaining 1   

张凯宁(1994-),硕士研究生,网络安全

XIN Yang 1   

辛阳(1977-),教授、博导,网络安全

  • 1、School of Cyberspace Security,Beijing University of Post and Telecommunication 100876

Abstract:ITo solve the problems including poor real time,low true positive rate and high false positive rate of traditional anomaly detection methods,a new combination method is adopted,which integrates multiple random projections and unsupervised clustering algorithm.We first aggregated network traffic by using random projection to get time series of object.Then,EM clustering detection was applied with traffic series to get multiple alarm sets.We next exploited the intersection operation to determine final anomaly set.Last,based on ISCX we experimented with dataset and obtained the conclusion that the new detection method has higher true positive ratio and lower false positive ratio and can detect anomaly of network.

Keywords: Network traffic;Anomaly detection;Random projection;Clustering

Click to fold

点击收起

基金:

论文图表:

引用

导出参考文献

.txt .ris .doc
张凯宁,辛阳. 基于多次随机映射和EM算法的异常流量检测[EB/OL]. 北京:中国科技论文在线 [2020-01-14]. https://www.paper.edu.cn/releasepaper/content/202001-81.

No.****

同行评议

共计0人参与

评论

全部评论

0/1000

勘误表

基于多次随机映射和EM算法的异常流量检测