基于动态特征的Android恶意代码检测和定位方法
首发时间:2021-03-08
摘要:恶意代码检测是android恶意应用检测中的重要一环,用于对可疑应用进行代码研判和危害性判定。该环节通常需要安全人员进行手动分析并定位恶意代码。为了解决分析过程繁琐的问题,本文提出一种基于运行时特征的Android恶意代码检测方法,针对应用程序运行过程中的敏感API调用与用户意图间的关系检测恶意行为并定位恶意代码。该方法根据触发条件将恶意行为分为主动触发类和被动触发类,通过收集的应用运行时信息构建行为-意图预测模型和多元时间序列作为恶意行为检测方法。本文对标记的602个恶意应用进行测试,恶意代码检测精确率为90.54%,实验结果表明,该方法可以有效检测出恶意行为并定位恶意代码位置。
关键词: Android安全 恶意行为检测 恶意代码定位 机器学习?????
For information in English, please click here
Android Malicious Code Detection and Localization based on Runtime Feature
Abstract:Malicious code detection is an important part of Android malware detection, which is used for code research and harmfulness judgment. This part usually requires security analyst to manually analyze and localize malicious code. In order to solve the cumbersome problem of the analysis process, this paper proposes an android malicious code detection and localization method based on runtime feature, which detect malicious behaviors and localizes realted code segments based on the relationship between sensitive API calls and user intentions. This method divides malicious behavior into active trigger and passive trigger based on triggering conditions, and constructing behavior-intention prediction model and multivariate time series based on collected runtime information as detection methods. In this paper, we marked 602 malwares as test set, and the precision rate reached 90.54%. The experimental results show that this method can effectively detect malicious behaviors and localize malicious code.
Keywords: Android security malware behavior detection malicious code localization machine learning?????
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于动态特征的Android恶意代码检测和定位方法
评论
全部评论