基于双注意力机制的单视角三维重构方法
首发时间:2022-11-30
摘要:从单张二维图像重构三维物体是一项重要且具有挑战性的任务,其难点主要是图像深度信息的不确定性。为解决该问题,本文提出了一种新颖的双注意力训练框架,通过借助轮廓信息提高了物体3D重构的准确率。本文首次在重构器中引入位置注意力和通道注意力以加强特征的表达,从而使重建的3D物体更加准确。此外,在训练时将重构的物体轮廓再次输入到重构器中,并利用轮廓循环一致性约束来监督模型训练,使模型能够学习到更多的信息。在ShapeNet数据集上的实验结果表明,该方法在不依赖3D标注和多视图监督的情况下,性能优于现有的3D重构方法。
For information in English, please click here
Single-view 3D Reconstruction Based on Dual Attention Mechanism
Abstract:Reconstructing a 3D shape from a single 2D image is a crucial but challenging task, whose difficulty mainly lies in depth ambiguity. In this paper, we propose a novel cyclic framework that employs silhouette information to reconstruct a 3D shape. Specifically, we first introduce position and channel attention into the reconstructor to strengthen the expression of features to reconstruct more accurate 3D shapes. Additionally, we feed the silhouettes of generated shapes back into the reconstructor along with the input images to form a complete cycle. Thus the training can be supervised via exploiting the cycle consistency, which we call silhouette cycle consistency. The experimental results on ShapeNet datasets show that the proposed method outperforms the state-of-the-art methods without relying on 3D annotations and multi-view supervision.
Keywords: 3Dobject reconstruction Single view supervision Dual attention mechanism Silhouette
基金:
引用
No.****
同行评议
共计0人参与
勘误表
基于双注意力机制的单视角三维重构方法
评论
全部评论