您当前所在位置: 首页 > 首发论文
筛选条件

时间

领域

全部

数学(74)

计算机科学技术(26)

地球科学(11) 显示更多>>

电子、通信与自动控制技术(10) 机械工程(9) 力学(8) 动力与电气工程(5) 水利工程(5) 信息科学与系统科学(3) 航空航天科学技术(3) 冶金工程技术(2) 物理学(2) 能源科学技术(2) 体育科学(1) 农学(1) 化学(1) 化学工程(1) 基础医学(1) 工程与技术科学基础学科(1) 环境科学技术(1) 管理学(1) 经济学(1) 中医学与中药学(0) 临床医学(0) 交通运输工程(0) 图书馆、情报与文献学(0) 土木建筑工程(0) 天文学(0) 安全科学技术(0) 心理学(0) 教育学(0) 材料科学(0) 林学(0) 核科学技术(0) 水产学(0) 测绘科学技术(0) 生物学(0) 畜牧科学、动物医学(0) 矿山工程技术(0) 纺织科学技术(0) 药学(0) 预防医学与卫生学(0) 食品科学技术(0)

学术评议

实时热搜榜

人工智能22560

SiC13537

基因11647

冠心病9587

数值模拟8730

我的筛选 >
2003-2020 全部
为您找到包含“流形”的内容共169

Li Qichao,Yan Wenjiao

$mathcal{A}$-manifolds and $mathcal{B}$-manifolds, introduced by A.Gray, are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an $mathcal{A}$-manifold and a $mathcal{B}$-manifold. The present paper proves that both focal submanifolds of each isoparametric hypersurface in unit spheres with $g=4$ distinct principal curvatures are $mathcal{A}$-manifolds. As for the focal submanifolds with $g=6$, $m=1$ or $2$, only one is an $mathcal{A}$-manifold, and neither is a $mathcal{B}$-manifold.

2014-06-17

The project is partially supported by the NSFC (No. 11301027

and the FRFCU (No. 2012CXQT09

the BJNSF (No. 1144013

the SRFDP (No. 20130003120008

School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing NormalUniversity, Beijing 100875, China ,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing NormalUniversity, Beijing 100875, China

#Mathematics#

An-Min Li,Guosong Zhao

In this paper we define the concept of Projective Blaschke manifolds and extend the theory of equiaffine differential geometry to the projective Blaschke manifolds. We prved that if M be a complete projective Blaschke n-sphere and its universal covering manifold is isometric to a complete (n+1) dimensional parabolic, elliptic or hyperbolic affine hypersphere, then M is a quotient space of E^n, S^n or D^n by a isometric subgroup of its corresponding spaces.

2010-01-08

教育部博士点基金(20060610004

国家自然科学基金(10631050

国家自然科学基金(10771146

国家973项目(2006CB805905

Sichuan University,Chengdu, China,

#Mathematics#

高小方,刘杰飞

2016-12-01

流形学习是机器学习与数据挖掘领域的一个重要研究方向。其经典算法总是假设高维数据批量存在于单一流形,且不能有效处理增量出现的高维多流形数据。本文针对等维独立多流形提出一种增量学习算法

高等学校博士学科点专向科研基金(20131401120004

国家自然科学基金(61303091和61201453

山西省高校科技创新项目(2015108和2015109

山西省自然科学基金(2015021091

山西省基础研究计划项目(2014021022-2

山西大学计算机与信息技术学院,太原 030006,山西大学计算机与信息技术学院,太原 030006

#计算机科学技术#

Lu Guangcun,Chen Xiaomin

In this article, for a compact special Legendrian submanifold withboundary of contact Calabi-Yau manifolds we study the deformationof it with boundary confined in an appropriately chosen contactsubmanifold of codimension two which we also call a scafford(Definition 4) by analogy with Butsher[1].Our result shows that it cannot bedeformed under such a boundary confinement. This result may be viewedas supplements of the compact boundless case considered by Tomassini andVezzoni[2].

2011-12-12

Research Fund for theDoctoral Program Higher Education of China (200800270003

The first author is supported by NationalNatural Science Foundation (Grant No. 10971014

School of Mathematical Sciences, Beijing Normal University, Beijing 100875,Department of Mathematics, China University of Petroleum, Beijing 102249

#Mathematics#