2008-04-25
局部保持的流形学习通过从局部到整体的思想保持观测空间和内在嵌入空间的局部几何共性,发现嵌入在高维欧氏空间中的内在低维流形。本文分析了局部保持的流形学习算法的基本实现框架,详细比较了一些局部保持的流形学习算法的特点,提出了几个有益的研究主题。
2009-06-01
基本思想是修正投影数据,首先提取出金属相关部分的投影数据,然后用具有一致性的线性投影值代替。体模仿真的结果表明图像中的金属伪影得到很好消除,金属周围的图像质量得到很大提高,并且校正效果比传统的插值算法要好得多。
东南大学生物科学与医学工程学院,东南大学生物科学与医学工程学院
#基础医学#
2016-01-04
,降低节点能耗。对于簇内成员节点,通过构建动态预测模型抑制节点的数据传输,降低通信开销。压缩感知(CS)理论表明,稀疏信号可以从少量线性投影中以高概率被精确恢复。因此在簇头节点上,STICDA提出了适用于
高等学校博士学科点专项科研基金资助项目(20120005110007)
北京邮电大学信息与通信工程学院,北京 100876,北京邮电大学信息与通信工程学院,北京 100876
2013-03-12
对于一个数据集,数据间的稀疏重构关系具有很好的分类信息。稀疏保留投影(SPP)正是基于这样的考虑所提出的一种特征提取方法,它的目标是获取一个线性投影空间,使得样本之间的全局稀疏重构关系得以保留。然而
教育部博士点基金(20093223110001)
江苏省普通高校研究生科研创新计划(CXLX11_0413)
南京邮电大学自动化学院,江苏南京 210023;南京信息工程大学电子与信息工程学院,江苏南京 210044,南京邮电大学自动化学院,江苏南京 210023,南京邮电大学自动化学院,江苏南京 210023
#计算机科学技术#
LIAO AnPing, TIAN YuShuai,YANG XiaoBo
Compressed sensing is put forward in recent years as a new type of signal transmission theory framework.~Compressed sensing theorymainly includes three aspects:~the sparse representation of signal,~encoding measuring and reconstruction algorithm.~Sparse representation of signal is a priori condition of compressed sensing.~In the measurement of coding,~In order to keep the original structure of the signal,~projection matrix must satisfy restricted isometry conditions,~and then obtain linear projection measurement of the original signal through the product of original signal and measure matrix.~Finally,~reconstruct the original signal by the measured value and the projection matrix using the reconstruction algorithm.~In this paper, a new bound on the restricted isometry conditions for sparse signals recovery is established. For the recovery of high-dimensional sparse signals, this paper considers constraint $ell_1$ minimization methods in the noiseless. It is shown that if the sensing matrix $A$ satisfies the corresponding $RIP$ condition, then all $k$-$sparse$ signals $eta$ can be recovered exactly via the constrained $ell_{1}$ minimization based on $y=Aeta$, which has improved the bound that was established by T. Cai and A. Zhang (IEEE Trans. Inf. Theory, 2014).
2016-04-14
National Natural Science Foundation of China (11271117)
College of Mathematics and Econometrics, Hunan University, Chang Sha 410082 , College of Mathematics and Econometrics, Hunan University, Chang Sha 410082 , College of Mathematics and Econometrics, Hunan University, Chang Sha 410082