2016-03-09
主成分分析(principle component analysis)是对高维数据进行处理、分析、压缩以及可视化的一个流行工具。在网页查询、计算机视觉中的生物信息应用、图像分析等方面有广泛的应用。但是在现实场景中的应用和表现往往会受外点和受损的观察数据等的影响,使其表现不尽如人意。因此增强主成分分析的鲁棒性就显得尤为重要.John Wright等人提出的鲁棒主成分分析模型是目前最流行的模型.本文针对John Wright等人提出的鲁棒主成分分析模型,总结了近年来比较实用的几个算法。通过模拟实验对这些算法的运行效果和效率进行了对比。并在最后给出了鲁棒主成分分析在背景分离方面的一个应用。
重庆大学数学与统计学院,重庆 401331,重庆大学数学与统计学院,重庆 401331
#数学#