您当前所在位置: 首页 > 首发论文
筛选条件

时间

领域

全部

机械工程(1)

中医学与中药学(0)

临床医学(0) 显示更多>>

交通运输工程(0) 体育科学(0) 信息科学与系统科学(0) 农学(0) 冶金工程技术(0) 力学(0) 动力与电气工程(0) 化学(0) 化学工程(0) 图书馆、情报与文献学(0) 土木建筑工程(0) 地球科学(0) 基础医学(0) 天文学(0) 安全科学技术(0) 工程与技术科学基础学科(0) 心理学(0) 教育学(0) 数学(0) 材料科学(0) 林学(0) 核科学技术(0) 水产学(0) 水利工程(0) 测绘科学技术(0) 物理学(0) 环境科学技术(0) 生物学(0) 电子、通信与自动控制技术(0) 畜牧科学、动物医学(0) 矿山工程技术(0) 管理学(0) 纺织科学技术(0) 经济学(0) 能源科学技术(0) 航空航天科学技术(0) 药学(0) 计算机科学技术(0) 预防医学与卫生学(0) 食品科学技术(0)

学术评议

实时热搜榜

SiC55390

人工智能46683

基因42087

数据挖掘22860

数值模拟21042

我的筛选 >
2003-2022 全部
为您找到包含“The study is sponsored by the National Special Project of International Cooperation in Science and Technology”的内容共1

DU Weiwen,GU Lizhi,WANG Jiantao

In this paper, a prediction method based on least square support vector machine is introduced into the surface roughness prediction model in low-frequency vibration cutting. The model is based on low-frequency vibration cutting experiment, to obtain the corresponding relation between vibration parameters and cutting parameters and the workpiece surface roughness. Construct the training sample set to train regression models of least square support vector machine through experimental data. Identify training sample set to solve the regression parameters a and b. The amplitude of A, vibration frequency f, feeding f1 and spindle speed n as the input variable Xi, obtain predicted values of surface roughness by applying forecasting model; using the value, which equals to the difference between predicted value and its actual measurements value of surface roughness, to evaluate forecasting model. Through examples, and compared with BP neural network and support vector machine method, obtain the following conclusion: under the condition of the same sample, based on least square support vector machine prediction model constructs an order of magnitude faster than SVM method, and the model prediction error is about 29% to support vector machine, the prediction accuracy is an order of magnitude higher than the BP model.

2014-03-31

The study is sponsored by the National Special Project of International Cooperation in Science and Technology (S2013HR0021L)

College of Mechanical Engineering and Automation,Huaqiao University,FuJian Xiamen,361021,College of Mechanical Engineering and Automation,Huaqiao University,FuJian Xiamen,361021,College of Mechanical Engineering and Automation,Huaqiao University,FuJian Xiamen,361021

#Mechanical Engineering#

0评论(0 分享(0)