您当前所在位置: 首页 > 学者

杨宏顺

  • 23浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Nanostructural analysis and textural modification of tilapia fish gelatin affected by gellan and calcium chloride addition

Li Cheng SowYang HongshunLi Cheng SowYang Hongshun

LWT-Food Science and Technology,2017,85(-):137-145 | 2017年07月11日

URL:

摘要/描述

Fish gelatin (FG) is more suitable for consumption by religious people than mammalian gelatin. One common modification method of FG is mixing FG with polysaccharides. However, the mechanism is not clear. We found that FG gel containing 0.1 g/100 mL gellan, 20 mmol/L CaCl2 and 6.67 g/100 mL FG (180 Bloom) matched gel strength, hardness, cohesiveness, chewiness as well as gelling temperature (Tg) and melting temperature (Tm) of commercial beef gelatin (BG) (240 Bloom). The modified FG was also observed by the result of helix/coil ratio and spherical aggregates. The modification decreased the diameter of FG's aggregates from 472 to 249 nm, which matched with BG (272 nm, P < 0.05). Co-existence of segregative gellan-gellan fibrous aggregates and associated FG-gellan amorphous structure were also identified at the modified FG by atomic force microscope (AFM). The helix/coil ratio and diameter of spherical aggregates were inversely correlated, the mechanism behind was the strength of gelatin association. The involvement of hydrogen bond and presence of FG-gellan complex have been validated by urea addition and Fourier transform infrared (FTIR) spectroscopy. A schematic model was proposed. As modified FG successfully matched the of texture properties of BG, it is promising to replace BG with FG.

【免责声明】以下全部内容由[杨宏顺]上传于[2021年05月10日 00时58分42秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果