您当前所在位置: 首页 > 学者

齐颖新

  • 108浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Lamin A/C negatively regulated by miR‐124‐3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats

暂无

Acta Physiologica,2019,228(3):e13374 | 2019年09月08日 | https://doi.org/10.1111/apha.13374

URL:https://onlinelibrary.wiley.com/doi/10.1111/apha.13374

摘要/描述

Aim Apoptosis of vascular smooth muscle cells (VSMCs) influenced by abnormal cyclic stretch is crucial for vascular remodelling during hypertension. Lamin A/C, a nuclear envelope protein, is mechano‐responsive, but the role of lamin A/C in VSMC apoptosis is still unclear. Methods FX‐5000T Strain Unit provided cyclic stretch (CS) in vitro. AnnexinV/PI and cleaved Caspase 3 ELISA detected apoptosis. qPCR was used to investigate the expression of miR‐124‐3p and a luciferase reporter assay was used to evaluate the ability of miR‐124‐3p binding to the Lmna 3’UTR. Protein changes of lamin A/C and relevant molecules were detected using western blot. Ingenuity Pathway Analysis and Protein/DNA array detected the potential transcription factors. Renal hypertensive rats verified these changes. Results High cyclic stretch (15%‐CS) induced VSMC apoptosis and repressed lamin A/C expressions compared with normal (5%‐CS) control. Downregulation of lamin A/C enhanced VSMC apoptosis. In addition, 15%‐CS had no significant effect on mRNA expression of Lmna, and lamin A/C degradation was not induced by autophagy. 15%‐CS elevated miR‐124‐3p bound to the 3’UTR of Lmna and negatively regulated protein expression of lamin A/C. Similar changes occurred in renal hypertensive rats compared with sham controls. Lamin A/C repression affected activity of TP53, CREB1, MYC, STAT1/5/6 and JUN, which may in turn affect apoptosis. Conclusion Our data suggested that the decreased expression of lamin A/C upon abnormal cyclic stretch and hypertension may induce VSMC apoptosis. These mechano‐responsive factors play important roles in VSMC apoptosis and might be novel therapeutic targets for vascular remodelling in hypertension.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果