您当前所在位置: 首页 > 学者

孙志宇

  • 81浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

暂无

Nature,2017,552():63–66 | 2017年11月29日 | https://doi.org/10.1038/nature24475

URL:https://www.nature.com/articles/nature24475

摘要/描述

High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes1,2,3,4,5,6,7 and may enable the observation of phenomena such as dark-matter particle annihilation or decay8,9,10. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments11,12,13,14,15,16, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays17,18. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements17,18, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE)19 with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements17,18, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果