您当前所在位置: 首页 > 学者

蔡登

  • 10浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Multi-label active learning based on submodular functions

暂无

Neurocomputing,2018,313():436-442 | 2018年11月03日 | doi.org/10.1016/j.neucom.2018.05.110

URL:https://www.sciencedirect.com/science/article/abs/pii/S0925231218307070?via%3Dihub

摘要/描述

In the data collection task, it is more expensive to annotate the instance in multi-label learning problem, since each instance is associated with multiple labels. Therefore it is more important to adopt active learning method in multi-label learning to reduce the labeling cost. Recent researches indicate submodular function optimization works well on subset selection problem and provides theoretical performance guarantees while simultaneously retaining extremely fast optimization. In this paper, we propose a query strategy by constructing a submodular function for the selected instance-label pairs, which can measure and combine the informativeness and representativeness. Thus the active learning problem can be formulated as a submodular function maximization problem, which can be solved efficiently and effectively by a simple greedy lazy algorithm. Experimental results show that the proposed approach outperforms several state-of-the-art multi-label active learning methods.

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果