您当前所在位置: 首页 > 学者

蔡登

  • 19浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Multi-Task Vehicle Detection With Region-of-Interest Voting

暂无

IEEE Transactions on Image Processing,2017,27(1):432 - 441 | 2017年10月12日 | 10.1109/TIP.2017.2762591

URL:https://ieeexplore.ieee.org/document/8066331

摘要/描述

Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNNs) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression, and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, and thus, detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary toward the corresponding ground truth. Then, each RoI can vote those suitable adjacent bounding boxes, which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle data set show that our approach achieves superior performance in vehicle detection compared with other existing published works.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果