您当前所在位置: 首页 > 学者

蔡登

  • 18浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Weakly-Supervised Deep Embedding for Product Review Sentiment Analysis

暂无

IEEE Transactions on Knowledge and Data Engineering,2017,30(1):185 - 197 | 2017年09月26日 | 10.1109/TKDE.2017.2756658

URL:https://ieeexplore.ieee.org/document/8051113

摘要/描述

Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence's orientation (e.g., positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the availability of large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings as weak supervision signals. The framework consists of two steps: (1) learning a high level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; and (2) adding a classification layer on top of the embedding layer and use labeled sentences for supervised fine-tuning. We explore two kinds of low level network structure for modeling review sentences, namely, convolutional feature extractors and long short-term memory. To evaluate the proposed framework, we construct a dataset containing 1.1M weakly labeled review sentences and 11,754 labeled review sentences from Amazon. Experimental results show the efficacy of the proposed framework and its superiority over baselines.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果