您当前所在位置: 首页 > 学者

蔡登

  • 21浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Addressing the Item Cold-Start Problem by Attribute-Driven Active Learning

暂无

IEEE Transactions on Knowledge and Data Engineering,2019,32(4):631 - 644 | 2019年01月09日 | 10.1109/TKDE.2019.2891530

URL:https://ieeexplore.ieee.org/document/8606103

摘要/描述

In recommender systems, cold-start issues are situations where no previous events, e.g., ratings, are known for certain users or items. In this paper, we focus on the item cold-start problem. Both content information (e.g., item attributes) and initial user ratings are valuable for seizing users' preferences on a new item. However, previous methods for the item cold-start problem either (1) incorporate content information into collaborative filtering to perform hybrid recommendation, or (2) actively select users to rate the new item without considering content information and then do collaborative filtering. In this paper, we propose a novel recommendation scheme for the item cold-start problem by leveraging both active learning and items' attribute information. Specifically, we design useful user selection criteria based on items' attributes and users' rating history, and combine the criteria in an optimization framework for selecting users. By exploiting the feedback ratings, users' previous ratings and items' attributes, we then generate accurate rating predictions for the other unselected users. Experimental results on two real-world datasets show the superiority of our proposed method over traditional methods.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果