您当前所在位置: 首页 > 学者

陈云霁

  • 9浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Effective and efficient microprocessor design space exploration using unlabeled design configurations

暂无

ACM Transactions on Intelligent Systems and Technology,2014,5(1):20 | 2014年01月01日 | doi.org/10.1145/2542182.2542202

URL:https://dl.acm.org/doi/abs/10.1145/2542182.2542202

摘要/描述

Ever-increasing design complexity and advances of technology impose great challenges on the design of modern microprocessors. One such challenge is to determine promising microprocessor configurations to meet specific design constraints, which is called Design Space Exploration (DSE). In the computer architecture community, supervised learning techniques have been applied to DSE to build regression models for predicting the qualities of design configurations. For supervised learning, however, considerable simulation costs are required for attaining the labeled design configurations. Given limited resources, it is difficult to achieve high accuracy. In this article, inspired by recent advances in semisupervised learning and active learning, we propose the COAL approach which can exploit unlabeled design configurations to significantly improve the models. Empirical study demonstrates that COAL significantly outperforms a state-of-the-art DSE technique by reducing mean squared error by 35% to 95%, and thus, promising architectures can be attained more efficiently.

关键词:

学者未上传该成果的PDF文件,请等待学者更新

我要评论

全部评论 0

本学者其他成果

    同领域成果