您当前所在位置: 首页 > 学者

黄元秋

  • 17浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 81下载

  • 0评论

  • 引用

期刊论文

FACE SIZE AND THE MAXIMUM GENUS OF A GRAPH PART 2: NONSIMPLE GRAPHS

黄元秋HUANG YUANQIU* Liu YANPEI**

Math. Slovaca Vol. 51 No.2 (2001) 129-140,-0001,():

URL:

摘要/描述

It is proved that a loopless graph which can be cellularly embedded on some closed surface in such a way that the size of each face does not exceed is upper embeddable. This settles the rst of two conjectures posed by Nedela and Skoviera in [NEDELA, R.-SKOVIERA, M.: On graphs beddable with short faces. In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529]. The second conjecture is established in [HUANG, Y.-LIU, Y.: Face size and the maximum genus of a graph. Part 1: Simple graphs, J. Combin. Theory Ser. B 80 (2000), 356-370].

版权说明:以下全部内容由黄元秋上传于   2009年09月27日 11时14分48秒,版权归本人所有。

我要评论

全部评论 0

本学者其他成果

    同领域成果