您当前所在位置: 首页 > 学者

胡国宏

  • 8浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

In vivo Dynamics and Distinct Functions of Hypoxia in Primary Tumor Growth and Organotropic Metastasis of Breast Cancer

暂无

Cancer Res,2010,70(10):3905–14 | 2010年05月01日 | 10.1158/0008-5472.CAN-09-3739

URL:https://cancerres.aacrjournals.org/content/70/10/3905.abstract?ijkey=e081f62cedc7479308debaa79ad02f6afce8a15f&keytype2=tf_ipsecsha

摘要/描述

Tumor hypoxia is known to activate angiogenesis, anaerobic glycolysis, invasion, and metastasis. However, a comparative analysis of the potentially distinct functions of hypoxia in primary tumor growth and organ-specific metastasis has not been reported. Here, we show distinct hypoxia kinetics in tumors generated by the MDA-MB-231 breast cancer sublines with characteristically different primary tumor growth rates and organotropic metastasis potentials. Hypoxia-induced angiogenesis promotes both primary tumor growth and lung metastasis but is nonessential for bone metastasis. Microarray profiling revealed that hypoxia enhances the expression of a significant number of genes in the lung metastasis signature, but only activates a few bone metastasis genes, among which DUSP1 was functionally validated in this study. Despite the different mechanisms by which hypoxia promotes organ-specific metastasis, inhibition of HIF-1α with a dominant-negative form of HIF-1α or 2-methoxyestradiol reduced metastasis to both lung and bone. Consistent with the extensive functional overlap of hypoxia in promoting primary tumor growth and lung metastasis, a 45-gene hypoxia response signature efficiently stratifies breast cancer patients with low or high risks of lung metastasis, but not for bone metastasis. Our study shows distinct functions of hypoxia in regulating angiogenesis and metastasis in different organ microenvironments and establishes HIF-1α as a promising target for controlling organotropic metastasis of breast cancer.

关键词:

【免责声明】以下全部内容由[胡国宏]上传于[2020年10月19日 11时57分57秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果