您当前所在位置: 首页 > 学者

胡清华

  • 26浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Feature Selection Based on Neighborhood Discrimination Index

暂无

IEEE Transactions on Neural Networks and Learning Systems,2017,29(7):2986 - 299 | 2017年06月23日 | 10.1109/TNNLS.2017.2710422

URL:https://ieeexplore.ieee.org/document/7956261

摘要/描述

Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Neighborhood is one of the most important concepts in classification learning and can be used to distinguish samples with different decisions. In this paper, a neighborhood discrimination index is proposed to characterize the distinguishing information of a neighborhood relation. It reflects the distinguishing ability of a feature subset. The proposed discrimination index is computed by considering the cardinality of a neighborhood relation rather than neighborhood similarity classes. Variants of the discrimination index, including joint discrimination index, conditional discrimination index, and mutual discrimination index, are introduced to compute the change of distinguishing information caused by the combination of multiple feature subsets. They have the similar properties as Shannon entropy and its variants. A parameter, named neighborhood radius, is introduced in these discrimination measures to address the analysis of real-valued data. Based on the proposed discrimination measures, the significance measure of a candidate feature is defined and a greedy forward algorithm for feature selection is designed. Data sets selected from public data sources are used to compare the proposed algorithm with existing algorithms. The experimental results confirm that the discrimination index-based algorithm yields superior performance compared to other classical algorithms.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 14时27分32秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果