您当前所在位置: 首页 > 学者

胡清华

  • 20浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Semisupervised Online Multikernel Similarity Learning for Image Retrieval

暂无

IEEE Transactions on Multimedia,2016,19(5):1077 - 108 | 2016年12月23日 | 10.1109/TMM.2016.2644862

URL:https://ieeexplore.ieee.org/document/7797119

摘要/描述

Metric learning plays a fundamental role in the fields of multimedia retrieval and pattern recognition. Recently, an online multikernel similarity (OMKS) learning method has been presented for content-based image retrieval (CBIR), which was shown to be promising for capturing the intrinsic nonlinear relations within multimodal features from large-scale data. However, the similarity function in this method is learned only from labeled images. In this paper, we present a new framework to exploit unlabeled images and develop a semisupervised OMKS algorithm. The proposed method is a multistage algorithm consisting of feature selection, selective ensemble learning, active sample selection, and triplet generation. The novel aspects of our work are the introduction of classification confidence to evaluate the labeling process and select the reliably labeled images to train the metric function, and a method for reliable triplet generation, where a new criterion for sample selection is used to improve the accuracy of label prediction for unlabeled images. Our proposed method offers advantages in challenging scenarios, in particular, for a small set of labeled images with high-dimensional features. Experimental results demonstrate the effectiveness of the proposed method as compared with several baseline methods.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 16时09分43秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果