您当前所在位置: 首页 > 学者

胡清华

  • 24浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Heterogeneous Feature Selection With Multi-Modal Deep Neural Networks and Sparse Group LASSO

暂无

IEEE Transactions on Multimedia,2015,17(11):1936 - 194 | 2015年09月07日 | 10.1109/TMM.2015.2477058

URL:https://ieeexplore.ieee.org/document/7244241

摘要/描述

Heterogeneous feature representations are widely used in machine learning and pattern recognition, especially for multimedia analysis. The multi-modal, often also high- dimensional , features may contain redundant and irrelevant information that can deteriorate the performance of modeling in classification. It is a challenging problem to select the informative features for a given task from the redundant and heterogeneous feature groups. In this paper, we propose a novel framework to address this problem. This framework is composed of two modules, namely, multi-modal deep neural networks and feature selection with sparse group LASSO. Given diverse groups of discriminative features, the proposed technique first converts the multi-modal data into a unified representation with different branches of the multi-modal deep neural networks. Then, through solving a sparse group LASSO problem, the feature selection component is used to derive a weight vector to indicate the importance of the feature groups. Finally, the feature groups with large weights are considered more relevant and hence are selected. We evaluate our framework on three image classification datasets. Experimental results show that the proposed approach is effective in selecting the relevant feature groups and achieves competitive classification performance as compared with several recent baseline methods.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 16时17分14秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果