您当前所在位置: 首页 > 学者

胡清华

  • 20浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Fuzzy Rough Set Based Feature Selection for Large-Scale Hierarchical Classification

暂无

IEEE Transactions on Fuzzy Systems,2019,27(10):1891 - 190 | 2019年01月10日 | 10.1109/TFUZZ.2019.2892349

URL:https://ieeexplore.ieee.org/document/8606948

摘要/描述

The classification of high-dimensional tasks remains a significant challenge for machine learning algorithms. Feature selection is considered to be an indispensable preprocessing step in high-dimensional data classification. In the era of big data, there may be hundreds of class labels, and the hierarchical structure of the classes is often available. This structure is helpful in feature selection and classifier training. However, most current techniques do not consider the hierarchical structure. In this paper, we design a feature selection strategy for hierarchical classification based on fuzzy rough sets. First, a fuzzy rough set model for hierarchical structures is developed to compute the lower and upper approximations of classes organized with a class hierarchy. This model is distinguished from existing techniques by the hierarchical class structure. A hierarchical feature selection problem is then defined based on the model. The new model is more practical than existing feature selection approaches, as many real-world tasks are naturally cast in terms of hierarchical classification. A feature selection algorithm based on sibling nodes is proposed, and this is shown to be more efficient and more versatile than flat feature selection. Compared with the flat feature selection algorithm, the computational load of the proposed algorithm is reduced from 98.0% to 6.5%, while the classification performance is improved on the SAIAPR dataset. The related experiments also demonstrate the effectiveness of the hierarchical algorithm.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 13时59分09秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果