您当前所在位置: 首页 > 学者

胡清华

  • 13浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Hybrid Noise-Oriented Multilabel Learning

暂无

IEEE Transactions on Cybernetics,2019,50(6):2837 - 285 | 2019年02月11日 | 10.1109/TCYB.2019.2894985

URL:https://ieeexplore.ieee.org/document/8638802

摘要/描述

For real-world applications, multilabel learning usually suffers from unsatisfactory training data. Typically, features may be corrupted or class labels may be noisy or both. Ignoring noise in the learning process tends to result in an unreasonable model and, thus, inaccurate prediction. Most existing methods only consider either feature noise or label noise in multilabel learning. In this paper, we propose a unified robust multilabel learning framework for data with hybrid noise, that is, both feature noise and label noise. The proposed method, hybrid noise-oriented multilabel learning (HNOML), is simple but rather robust for noisy data. HNOML simultaneously addresses feature and label noise by bi-sparsity regularization bridged with label enrichment. Specifically, the label enrichment matrix explores the underlying correlation among different classes which improves the noisy labeling. Bridged with the enriching label matrix, the structured sparsity is imposed to jointly handle the corrupted features and noisy labeling. We utilize the alternating direction method (ADM) to efficiently solve our problem. Experimental results on several benchmark datasets demonstrate the advantages of our method over the state-of-the-art ones.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 14时02分17秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果