您当前所在位置: 首页 > 学者

胡清华

  • 16浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 0下载

  • 0评论

  • 引用

期刊论文

Weighted Graph Embedding-Based Metric Learning for Kinship Verification

暂无

IEEE Transactions on Image Processing,2018,28(3):1149 - 116 | 2018年10月10日 | 10.1109/TIP.2018.2875346

URL:https://ieeexplore.ieee.org/document/8488515

摘要/描述

Given a group photograph, it is interesting and useful to judge whether the characters in it share specific kinship relation, such as father-daughter, father-son, mother-daughter, or mother-son. Recently, facial image-based kinship verification has attracted wide attention in computer vision. Some metric learning algorithms have been developed for improving kinship verification. However, most of the existing algorithms ignore fusing multiple feature representations and utilizing kernel techniques. In this paper, we develop a novel weighted graph embedding-based metric learning (WGEML) framework for kinship verification. Inspired by the fact that family members usually show high similarity in facial features like eyes, noses, and mouths, despite their diversity, we jointly learn multiple metrics by constructing an intrinsic graph and two penalty graphs to characterize the intraclass compactness and interclass separability for each feature representation, respectively, so that both the consistency and complementarity among multiple features can be fully exploited. Meanwhile, combination weights are determined through a weighted graph embedding framework. Furthermore, we present a kernelized version of WGEML to tackle nonlinear problems. Experimental results demonstrate both the effectiveness and efficiency of our proposed methods.

关键词:

【免责声明】以下全部内容由[胡清华]上传于[2020年11月11日 14时08分35秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果