您当前所在位置: 首页 > 学者

王进科

  • 41浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 46下载

  • 0评论

  • 引用

期刊论文

Fabrication of Unimolecular Double-stranded DNA Microarrays on Solid Surfaces for Probing DNA-Protein/Drug Interactions

王进科Jinke Wang Tongxiang Li Yunfei Bai Yi Zhu and Zuhong Lu*

Molecules 8 (2003): 153-168,-0001,():

URL:

摘要/描述

We present a novel method for fabricating unimole cular double-stranded DNA microarrays on solid surfaces, which were used to probe sequence-specific DNA/protein interactions. For manufacturing the unimolecular double-stranded DNA microarrays, two kinds of special single-stranded oligonucleotides, constant oligonucleotide and target oligonucleotide, were chemically synthesized. The constant oligonucleotides with internal aminated dT were used to capture and immobilize the target oligonucleotides onto the solid surface, and also to provide a primer for later enzymatic extension reactions, while target oligonucleotides took the role of harbouring DNA-binding sites of DNA-binding proteins. The variant target oligonucleotides were annealed and ligated with the constant oligonucleotides to form the new unimolecular oligonucleotides for microspotting. The prepared unimolecular oligonucleotides were microspotted on aldehyde-derivatized glass slides to make partial-dsDNA microarrays. Finally, the partial-dsDNA microarrays were converted into a unimolecular complete-dsDNA microarray by a DNA polymerase extension reaction. The efficiency and accuracy of the polymerase synthesis were demonstrated by the fluorescent-labeled dUTP incorporation in the enzymatic extension reaction and the restriction endonuclease digestion of the fabricated unimolecular complete-dsDNA microarray. The accessibility and specificity of the sequence-specific DNA-binding proteins binding to the immobilized unimolecular dsDNA probes were demonstrated by the binding of Cy3 labeled NF-?B (p50

【免责声明】以下全部内容由[王进科]上传于[2009年12月25日 18时02分08秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果