您当前所在位置: 首页 > 学者

易帆

  • 19浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 86下载

  • 0评论

  • 引用

期刊论文

A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere

易帆Shao Dong Zhang and Fan Yi

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO.D14,-0001,():

URL:

摘要/描述

By using a two-dimensional, full-implicit-continuous-Eulerian (FICE) scheme, we simulated the nonlinear propagation and evolution of gravity wave paekels in a compressible, nonisothermal and dissipative atmosphere. The numerical results show that when an upgoing gravity wave packet is generated in the lower mesosphere, it can propagate along gs ray path until it reaches lower thermosphere. However, upon reaching the lower thennosphere, the wave packet and associated energy propagate ahnost horizontally, which departs obviously from the prediction of linear gravity wave theory under WKB approximation in the nondissipative case. Further discussion indicates that the influences of nonlinearity and background temperature are not strong enough to restrict completely the upward energy propagation of the wave packet and that the influence of constant molecular viscosity on the characteristics (energy propagation path and wave parameters) of gravity waves is insignificant. It is the vertical inhomogeneity of molecular viscosity that causes the restriction of upward energy propagation of the gravity wave packet Moreover, througheut propagation, the donlgrant vertical wavelength of the wave packet decreases with time, as it is affected by the joint actions of nonlinearity, background temperature, and dissipation. These results indicate that the molecular viscosity, especially the vertical inhomogeneity of molecular viscosity, plays an important talc in the nonlinear propagation of gravity wave packets.

关键词:

版权说明:以下全部内容由易帆上传于   2005年10月12日 22时25分32秒,版权归本人所有。

我要评论

全部评论 0

本学者其他成果

    同领域成果