您当前所在位置: 首页 > 学者

郑凌

  • 42浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 104下载

  • 0评论

  • 引用

期刊论文

Pharmacologic intervention targeting glycolytic-related pathways protects against retinal injury due to ischemia and reperfusion

郑凌Ling Zheng* Shuqing Liu Ming-Zhong Sun Jinsook Chang Mark R. Chance and Timothy S. Kern

Proteomics. 2009 April; 9 (7): 1869-1882.,-0001,():

URL:

摘要/描述

Retinal ischemia contributes to multiple ocular diseases while aminoguanidine (AMG) treatment significantly inhibits the neuronal and vascular degeneration due to acute retinal ischemia and reperfusion (I/R) injury. In the present study, two-dimensional differential in gel electrophoresis (2D DIGE) was applied to profile global protein expression changes due to retinal I/R injury, and the protection effects mediated by AMG. Retinal ischemia was induced by elevated intraocular pressure to 80–90 mmHg for 2 hours, and reperfusion was established afterward. Retinal tissues were collected 2 days after I/R injury. After 2D DIGE analysis, a total of 96 proteins were identified. Among them, 28 proteins were identified within gel spots whose intensities were normalized by AMG pre-treatment, pathway analysis indicated that most were involved in glycolysis and carbohydrate metabolism. Selected enzymes identified by MS/MS within these pathways, including transketolase, triosephosphate isomerase 1, aldolase C, total enolase, and pyruvate kinase were validated by quantitative Western blots. Glycolytic enzymes and other differentially regulated proteins likely play previously unrecognized roles in retinal degeneration after I/R injury, and inhibition of the resulting metabolic changes, using pharmacologically gents such as AMG, serve to inhibit the changes in metabolism and mitigate retinal degeneration. Select glycolytic enzymes may provide novel therapeutic targets for inhibiting the neuronal and vascular degeneration after retinal I/R injury.

【免责声明】以下全部内容由[郑凌]上传于[2011年06月27日 14时40分26秒],版权归原创者所有。本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

我要评论

全部评论 0

本学者其他成果

    同领域成果