您当前所在位置: 首页 > 学者

朱允民

  • 66浏览

  • 0点赞

  • 0收藏

  • 0分享

  • 139下载

  • 0评论

  • 引用

期刊论文

Linear minimum variance estimation fusion

朱允民ZHU Yunmin LI Xianrong (X. Rong Li) & ZHAO Juan

Science in China Ser. F Information Sciences 2004 Vol.47 No.6 728-740,-0001,():

URL:

摘要/描述

This paper shows that a general multisensor unbiased linearly weighted estimationfusion essentially is the linear minimum variance (LMV) estimation with linearequality constraint, and the general estimation fusion formula is developed by extendingthe Gauss-Markov estimation to the random parameter under estimation. First, we formulatethe problem of distributed estimation fusion in the LMV setting. In this setting, thefused estimator is a weighted sum of local estimates with a matrix weight. We show thatthe set of weights is optimal if and only if it is a solution of a matrix quadratic optimizationproblem subject to a convex linear equality constraint. Second, we present a uniquesolution to the above optimization problem, which depends only on the covariance matrixCk. Third, if a priori information, the expectation and covariance, of the estimated quantityis unknown, a necessary and suf[1] cient condition for the above LMV fusion becoming thebest unbiased LMV estimation with known prior information as the above is presented. Wealso discuss the generality and usefulness of the LMV fusion formulas developed. Finally,we provide an off-line recursion of Ck for a class of multisensor linear systems with coupledmeasurement noises.

版权说明:以下全部内容由朱允民上传于   2006年06月09日 23时21分28秒,版权归本人所有。

我要评论

全部评论 0

本学者其他成果

    同领域成果