

楼森岳
量子场论、粒子物理和非线性物理。
个性化签名
- 姓名:楼森岳
- 目前身份:
- 担任导师情况:
- 学位:
-
学术头衔:
博士生导师, 国家杰出青年科学基金获得者
- 职称:-
-
学科领域:
力学
- 研究兴趣:量子场论、粒子物理和非线性物理。
楼森岳教授,男,1957年3月出生,浙江余姚人。1989年6月毕业于复旦大学物理系,获理学博士学位。现为宁波大学理学院执行院长、物理学科带头人,国家“有突出贡献中青年科技专家”,国家“百千万人才工程一、二层次人选”,国家杰出青年基金获得者,享受国务院政府特殊津贴,新世纪“151”人才工程第一层次人选,现任《Communication in Theoretical Physics》杂志和《Chinese Physics Letters》杂志的编委,上海交通大学物理系兼职博士生导师。曾获国家教委科技进步二、三等奖和上海市科技进步二等奖。
主要研究方向:量子场论、粒子物理和非线性物理。特别在非线性物理可积体系的研究中作出了一些具有独创性的工作。如:建立了求解非线性方程的形变映射方法;建立了1+1维可积体系强对称算子的因式化和逆方法;建立了形式级数对称理论;建立了无穷多Lax对和非局域对称理论;给出了多种意义下的高维可积模型;在实验上观察到了宏观格点体系的多种孤子激发模式;建立了多线性分离变量法和导数泛函分离变量法等等。已在SCI系统发表学术论文一百余篇。发表论文已被他引一千余篇次。
-
主页访问
2436
-
关注数
0
-
成果阅读
132
-
成果数
4
【期刊论文】Analytical investigation of Rossby waves in atmospheric dynamics
楼森岳, Fei Huang a, b, S.Y. Loub, c, d, ∗
F. Huang, S.Y. Lou/Physics Letters A 320(2004)428-437,-0001,():
-1年11月30日
The (2+1) -dimensional nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane is analyzed by using the classical Lie group approach.Using the group theory,some types of general exact Rossby wave solutions can be obtained whence a special Rossby wave solution is known. Especially,it is found that the only effect of the time-dependent background basic wind on the Rossby waves is the accumulate motion in the zonal direction. Some types of exact explicit similarity Rossby wave solutions with both nonconstant linear and nonlinear shears are also given.
Rossby waves, Atmospheric dynamics, Group invariant solutions
-
39浏览
-
0点赞
-
0收藏
-
0分享
-
110下载
-
0评论
-
引用
【期刊论文】Equations of arbitrary order invariant under the Kadomtsev–Petviashvili symmetry group
楼森岳, S. Y. Loua), Xiao-Yan Tang
JOURNAL OF MATHEMATICAL PHYSICS 45(2004)1020-1030,-0001,():
-1年11月30日
By means of a simple new approach, a general Kadomtsev-Petviashvili (KP) family with an arbitrary function of group invariants of arbitrary order is proposed. It is proved that the general KP family possesses a common infinite dimensional Kac-Moody-Virasoro Lie point symmetry algebra. The known fourth order one can be re-obtained as a special example. The finite transformation group is presented in a clearer form. The Kac-Moody-Virasoro group invariant solutions and the Kac-Moody group invariant solutions of the KP family are determined by the Boussinesq and KdV families, respectively.
-
30浏览
-
0点赞
-
0收藏
-
0分享
-
98下载
-
0评论
-
引用
楼森岳, ZHANG Shun-Li, and LOU Sen-Yue,
Commun. Theor. Phys. (Beijing, China) 40(2003)401-406,-0001,():
-1年11月30日
Using the generalized conditional symmetry approach, a complete list of canonical forms for the Korteweg de-Vries type equations with which possessing derivative-dependent functional separable solutions(DDFSSs)is obtained. The exact DDFSSs of the resulting equations are explicitly exhibited.
variable separation,, conditional symmetry,, KdV-type equation
-
30浏览
-
0点赞
-
0收藏
-
0分享
-
85下载
-
0评论
-
引用
【期刊论文】Localized Excitations in (3+1) Dimensions: Dromions, Ring-Shape and Bubble-Like Solitons *
楼森岳, LOU Sen-Yue
CHIN. PHYS. LETI. Vol. 21, No.6 (2004) 1020,-0001,():
-1年11月30日
By means of infinite-dimensional Kac-Moody-Vicasoro symmetry group transformation. Rich localized (3+1). Dimensional excitations such as dromions, ring-shape and bubble-like excitations are obtained for a matrix system which is produced by extending the Lax pair of the celebrated self-dual Yang-Mills field. Adundant (3+1). dimensional localized excitations can also be found in other types of nonlinear systems.
-
33浏览
-
0点赞
-
0收藏
-
0分享
-
96下载
-
0评论
-
引用