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3.1 Introduction 

The intimate relation between mathematics and chemistry may seem 
surprising to the layman, but to someone well acquainted with either filed,    
it appears as a natural evolutionary development. A theory invented by 
mathematicians to settle mathematical questions often turns out to be    
exactly what chemists and biologists need to advance their analyses and 
predictions of the molecular structures and chemical reactions. Mathematical 
chemistry should either introduce new mathematical methods or techniques for 
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the solution of chemical and biological problems, or develop new mathematical 
approaches or insights pertinent to any area of chemistry and biochemistry.  
DNA molecules have stimulated mathematical thinking at least since the 
discovery of the DNA double helix in 1953 [1,2]. The model of the DNA 
molecule proposed by Watson and Crick, with all its biological implications, 
has been one of the major scientific accomplishments of this century. In 1962 
Watson, Crick and Wilkins shared the Nobel Prize in Medicine or Physiology, 
for their discovery of the DNA structure [1-4]. Understanding the mechanism 
of double helix and the consequences of this structural feature of DNA may be 
viewed as the foundation of our ultimate understanding of life. Thus chemistry, 
along with biology, can be regarded with mathematics as valid scientific 
approaches that are justifiable because they contribute to human knowledge in 
areas of universal philosophical significance. 

DNA, the fundamental molecule of life, is both variable and flexible as the 
genetic material's double helix. In many forms of DNA the double helix itself 
is transformed into a new helix of a higher order, and even the new helix can tie 
itself in knots and links. Twisted, tangled, supercoiled, knotted or linked DNA, 
which can have important biological implications, is best described and 
analyzed by means of a simple mathematical model. Fortunately, the branch of 
mathematics known as topology which studies the properties of structures that 
remain unchanged when the structures are deformed, is able to offer substantial 
help in this effort. Topology is a branch of geometry and cannot actually help 
us solve equations. What it provides rather is a mathematical vocabulary 
(adjectives and nouns) and some algorithms (invariant) that allow a set of 
solutions to be discussed in a general way without actually being specified. The 
link between DNA and topology soon became obvious and this resulting branch 
of research, on the borderline between two fields, has attracted considerable 
attention for the last forty years. This is certainly due in part to the introduction 
of mathematical concepts into the description of molecules but also to the 
development of new synthetic methodologies, as well as powerful instrumental, 
and analytical techniques. 

The study of DNA topology [5-7] involves the following five major 
endeavors: 
(1) Elucidation of the mathematical implications of the DNA structures; 
(2) Exploration of stereochemical theory from the topological perspective; 
(3) Understanding of topological conversions and reaction pathways for the 

DNA replication and recombination; 
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(4) Use of topology to probe the hidden action of enzymes; and 
(5) The design and synthesis of DNA stereoisomers with novel topology. 

In summary, the study of DNA topology seeks to explain the molecular 
mechanisms underlying biological complexity. It has given rise to new ways of 
thinking about life. The potential gains from these exciting areas are 
considerable, and the life science disciplines are being challenged in a great 
variety of ways. How important such an approach will be remains to be seen; 
but we have explored only a minuscule fraction of this new domain! 

3.1.1 The Ribbon Model 
The first mathematical model, which is used to describe circular duplex 

DNA, is a closed ribbon in which the two edges of the ribbon represent the 
single strands of DNA.   

In 1961 Cǎ lugǎ reanu [8] found the basic relationship between the 
geometrical and topological properties of a closed ribbon and in 1968 Pohl 
[9,10] gave much simplified proofs of  Cǎlugǎreanu’s results. In 1969 White, 
as a Ph.D. student of Pohl, proved [11] that a closed ribbon has both a linking 
number Lk and a twist Tw. These results were originally proved as a piece of 
pure mathematics, without any reference to DNA. In 1971 Fuller independently 
suggested [12] that the difference of the linking and twisting number is called 
the writhing number Wr so that   

This White-Fuller formula follows from rigorous examination of the results of 
Vingorad and co-workers and is also the starting point for mathematical 
methods in DNA research. In 1976 Crick [13] pointed out important 
applications of this formula, and in 1978 Fuller [14] deduced some conclusions 
from this formula, e.g., the linking-number difference. Since then the 
White-Fuller formulas, as basic relations, have become the fundamental tools 
of DNA topology [15-26]. This line of research is of fundamental importance in 
understanding the mechanism of supercoiling and the structural features of 
DNA molecules. Detailed background information on several newer results can 
be found in Refs. [7,21,25,27], whereas some of the earlier developments are 
reviewed in Refs. [15-17,20]. It is now known that each of the three quantities, 
Lk , Tw , and Wr, defined for a closed ribbon, has a desirable property not shared 
by the other two: Lk is topological, Tw and Wr are geometric. It is clear, however, 
that the present knowledge of supercoiling, both theoretical and experimental, 
provides a sound basis for the investigation of the surprising manifestation of 

.rwk WTL +=
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the double helix. Despite these successes, many questions arising from this line 
of research have remained unanswered or unanswerable.  

3.1.2 Knot Theory 
By a DNA knot we mean a curve of single-strand or double-strand DNA in 

three-dimensional spaces which begins and ends at the same point and does not 
intersect itself. A DNA link is a class of intertwined supermolecules and 
interlocked superstructures in which two circular duplex DNA molecules are 
mechanically interlocked. It is now clear that knots and links are new forms of 
the molecular structures and the stable knot- and link-like structures [28,29] 
represent solutions to the nonlinear field equations. 

Links and knots have traditionally been considered as chemical curiosities, 
though researchers finally stopped looking at them as nothing but exotic 
chemical objects when DNA was clearly shown by biologists to form links and 
knots. A great variety of single- and double-stranded DNA knots have been 
observed in diverse biological systems [30-32], and by now have become a 
commonplace in biochemistry topology [6]. DNA links (or DNA catenanes) in 
vivo exist in plasmid DNA, in viruses, as well as in the replication of circular 
DNA [6,7,31]. Thus, chemistry and biology need knot theory to manipulate 
these substances. The development of analytical structural, synthetic, and 
theoretical techniques appropriate to this area of DNA knots and links 
represents an enormous challenge and opportunity for scientists in many 
different discipleines.  

Knot theory [33-36], which is a part of topology, studies the placement 
problem of a one-dimensional curve traced in three-dimensional space. Before 
describing some of the methods that have been developed for knots that are 
different, however, it is necessary to decide when they can be regarded as being 
the same. To prove that two knots are equivalent it will suffice to deform one 
until it matches the other. On the other hand, in order to prove that the knots are 
different it is necessary to find some property that distinguishes them. Such a 
property of a knot is called an invariant. An invariant is a characteristic 
property of a knot that is unchanged by deformations of the knot. Such an 
invariant will always be the same if two knots are the same and will always be 
different if two knots are different. But the problem is that the invariants can be 
the same for two knots and even when the knots are not the same [37]. What 
mathematicians really want therefore are properties of knots that they can 
calculate that are genuinely invariant, that uniquely characterize knots. Thus, to 
completely classify and characterize knots or links, using a well-defined 
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invariant, is the fundamental task of knot theory. 
To the best of our knowledge there are two areas of knot theory with 

potential for major impact on new knowledge of DNA topology: 

3.1.2.1 The Polynomials of Knots and Links   One of the most important 
invariant of a knot or link takes the form of a polynomial. There are many 
methods available for polynomial calculation [38]. Generally, such polynomials 
can be calculated by a simple iterative procedure starting with standard 
drawings of knots and links. More generally, the polynomials can encode data 
about knots and links in some very complicated way [37]. Just what the 
encoding pattern is poses an interesting challenge for mathematicians.  

In 1928, John Alexander, an American mathematician, discovered a 
simple polynomial that is associated with knots and can determine whether 
knots are distinct [39]. But, the Alexander polynomial may be the same for two 
knots even when the knots are not the same. In 1985 Jones [40] discovered a 
one-variable polynomial. Almost immediately, six of mathematicians [41] 
independently and by different methods found a two-variable polynomial. By 
specifying one variable, we get the Alexander polynomial. By specifying 
another, we get the Jones polynomial [37]. This finding is the basis of the 
Lickorish-Millett polynomial [42-44]. It appears that the first applications of 
the new polynomials with the two-variable to DNA catenanes (links) and knots 
were made by White, Millett and Cozzarelli [45] in 1987. They utilized the 
polynomials to classify the topological state of DNA knots and links as well as 
to determine enzyme mechanism. At that time, Cozzarelli’s group described 
three invariants of knots and links: the node number (or crossing point number) 
[46], the Schubert invariant [47], and the polynomials invariant [45]. The node 
number provides a ready first-level codification and is also critical for the 
structure of DNA in solution. The simple, integral Schubert invariant, β and α, 
have the advantage of classification uniqueness. Many different knots and links 
have the same number of nodes and, extremely rarely, have the same 
polynomials. Nonetheless, it was the development of the polynomial invariants 
which basically solved the classification problem for DNA knots and links [45].  

3.1.2.2 The Tangle Model   The mathematical notion of tangles, which was 
first introduced into knot theory by J. H. Conway, plays an important role in 
DNA topology. In 1967, Conway [48] defined a polynomial with integral 
coefficients for links or knots, which can be inductively computed from a 
regular projection of a link or knot. The Conway polynomial is a refined variant 
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of the classical Alexender polynomial and a more powerful invariant of 
oriented knots and links [35]. Conway’s fraction theorem [35,36] allows us to 
quickly calculate polynomials of the numerators and denominators of rational 
tangles. Tangles are an encoding for knots and usually represented by their 
projections, called tangle diagrams. Rational tangles, of course, are important in 
studying DNA topology. In recent years, exciting advances have been made in 
the study and control of the tangle model. A rigorous mathematical treatment of 
tangles is found in Ernst and Sumners [49]. Mathematical results on the tangle 
equations can be found in Ernst [50,51]. More intuitive treatments of the 
mathematics are found in Sumners [52-55]. Using tangles, we can rigorously 
deduce enzyme mechanism from the topology of the DNA substrate and 
product (Summers, Ernst, Spengler and Cozzarelli, 1995 [56]; Ernst and 
Summers, 1998 [57]). Thus, the tangle model provides mathematical proof of 
structure and mechanism.  More importantly, tangles can be used to prove that 
the unique mechanism for enzyme action has been found. The mathematically 
tractable type of tangles, rational tangles, can also describe DNA 
recombination. In short, a tangle provides an accessible, mathematically 
general, description of site-specific recombination and associated topological 
changes that permit definition of enzyme mechanism and prediction of 
substrate and product structures.  

Indeed knot theory, an esoteric branch of pure mathematics [58], evolved 
from the interaction between chemistry and biology that appears here in new 
forms invigorated by new ideas. Although there is much to learn, the stakes are 
high and the odds for success are excellent.  

The advance of molecular biology has undergone revolutionary 
acceleration during the past two decades, and chemists and biologists have 
exponentially increased the number of reaction types and classes of DNA and 
protein molecules. DNA can be cut apart, modified and reassembled; it can be 
amplified to form many copies; and perhaps most telling, with DNA one can 
generate RNA and then protein molecules of desired size and constitution [59]. 
The central experimental maneuver in these manipulations is the cloning of 
genes and the polymerase chain reaction [60]. Polymerase chain reactions 
(PCRs) involve a simple technique for copying a piece of DNA in the 
laboratory with readily available reagents. Because the number of copies 
increases exponentially, more than 100 billion can be made in only a few hours. 
It is the polymerase chain reaction, more than any other single factor, which has 
changed the face of biology. In 1993, K. B. Mullis won the Nobel Prize in 
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Chemistry, for his discovery of the polymerase chain reaction. Recently, PCR 
has been considered as the experimental basis of DNA computing [61]. 

In summary, molecular biology has become sufficiently detailed that many 
of its most important current questions must be phrased and answered using 
mathematical methods. Unfortunately, the theory of mathematical chemistry 
and DNA topology presently cannot provide fully adequate methods. This is an 
area ripe for development and deserves special attention. To understand the 
symmetry properties of large, very flexible molecules with novel topology, 
such as DNA links and knots, new methods are required. We introduce here 
point groups to the Seifert construction in knot theory for the first time and 
discuss the implications of our model for real DNA. Chirality or achirality, an 
interesting problem, has been characterized by applying a symmetry criterion to 
DNA links and knots. Our offering in this chapter represents only an initiateon 
to the relevant questions, but clearly such questions are well worth considering 
and eventually result in a better understanding of the life process and genetic 
control. 

3.2  Chirality and Achirality 

Most objects found in nature are not identical to their mirror image and 
therefore are said to possess chirality, or handedness [62]. To distinguish the 
two chiral forms, they are often designated right-handed or left-handed. Objects 
that are identical to their mirror image are said to possess achirality. Chemists 
refer to mirror-image molecules as L-enantiomers and D-enantiomers; L and D 
stand for levo (left) and dextro (right). Modern science has revealed that nature 
is asymmetric with respect to chirality and is symmetric with respect to 
achirality. Chirality is so much a part of daily life that we feel we understand it 
thoroughly. Although the left and right human hands are obviously different, 
left and right rubber gloves are essential the same. This is because the former is 
extremely rigid whereas the latter is completely flexible. A rigid hand cannot be 
deformed into its mirror image and therefore is chiral, whereas a flexible rubber 
glove can be deformed into its mirror image by inside-out motion or 
deformation and therefore is achiral. The rigidity is a geometrical property and 
the flexibility is a topological property. This fact tells us that a helix being 
left-handed or the right-handed helix is not a really criterion for chirality. 
Strictly speaking, chirality or achirality is an intrinsic property of the object. 
This requires proof!   
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Chirality can be classified into geometrical chirality and topological 
chirality according to object’s rigidity or non-rigidity. A rigid object is 
geometrically chiral [63] if it cannot be superimposed on its mirror image by 
simple rotations and translations. A non-rigid object is geometrically chiral if its 
topology has the rigid presentation and two distinct forms. A non-rigid object is 
topologically chiral if its topology has the non-rigid presentation and the 
left-handed and right-handed forms are mirror images of each other.  

Achirality can also be divided into two groups, geometrical achirality and 
topological achirality. In order to completely characterize achirality it is useful 
to understand the deformation of turning something “inside-out”. As an 
example of this we can look at the two-handled torus with two holes. Stewart 
[64] sketched a series of pictures of the process, which is shown in Figure 3.1. 
First turn the whole thing inside out through its holes. Then the two handles on 
the outside became two tunnels on the inside. But then you can place your 
finger into each in turn and pull it out to create a handle on the outside. And 
then all you have to do is twist each handle around and you end up with the 
original ensemble, but turned inside out [64]. Intuitively it is not difficult to see 
that the two-handled torus with two holes can be converted into its own mirror 
image by a continuous deformation. Therefore, it is topologically achiral. 

The abstract mathematical objects discussed above may be used as a 
model of the molecular structures. A molecule shaped like a rubber glove does 
not in fact exist in chemistry and biology. An approximate rubber glove can 
sometimes be used as a model of the inside-out deformation. Thus, a rubber 
glove is defined as a structure which can be turned inside-out (or reversed up 
and down) and in which the palm and thumb are differentiated from the back of 
the hand. A rubber glove is said to be Euclidean rubber glove if its topology 
possesses a rigid presentation and is said to be topological rubber glove if its 
topology possesses a non-rigid presentation. The Euclidean rubber glove is 
geometrically chiral and the topological rubber glove is topologically achiral. A 
torus with a hole (Figure 3.2) is a topological rubber glove, but the two-handled 
torus with two holes (Figure 3.1) is not a topological rubber glove. However, 
assuming the top edge and left frame are differentiated from the bottom edge 
and right frame, then our Figure 3.1(a) can be seem as an approximate model of 
the topological rubber glove. But, as noted above, a rubber glove has no 
presentations with proper and improper symmetry. 

Flapan ever proved [65] that the union of figure-eight knot and circle (G = 
K∪C) [66] is a topological rubber glove. The history of the particular problem 
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Figure 3.1: How to turn a two-handle torus inside out through two holes. Reproduced 

from Ref. [64] by permission of M. Goodman and Scientific American, Inc. 

began with Mislow [67], who gave examples of disubstituted biphenyls that are 
achiral yet have no chemically accessible symmetry presentations. This led 
Walba [68,69] to find the knot 41 with a single colored point as a rubber glove. 
A molecular version of the rubber glove has recently been realized in 
single-stranded DNA tied into a figure-eight knot [70]. It is possible to rank the 
classes of molecular graphs by their “degree of chirality”: from most chiral to 
least chiral [69]. A good insight into this domain of science may be found in 
Mislow excellent review [63] (also see Refs. [71-74]). 
It is now clear that chirality reserves left and right [75] and achirality reverses 
up and down (Figure 3.1). Most molecular handedness is a geometrically 

c d

a b 
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Figure 3.2: How to turn a torus inside out through one hole. Reproduced from Ref. [64] 

by permission of M. Goodman and Scientific American, Inc. 

chiral [63], in essence, but topologically chiral molecules are very rare. 
Topological chirality is therefore only a special case of molecular chirality. 
Tsung Dao Lee and Chen-Ning Yang, who were awarded a Nobel Prize in 1957, 
proved in 1956 that the weak interactions do define a screw direction [76]: 
nature discriminates between left- and right-handedness. It is now evident that 
the world is chirally asymmetric at all scales, from the scale of elementary 
particles upward; mirror symmetry [75] is often absent in nature [62]: 
symmetry was broken and one kind of handedness became dominant, although 
the dominance of another was equally likely.  

3.3   Genus, Point Group, and Seifert Construction 
The Seifert construction [77] is a minimal surface with the smallest genus. 

The genus is a geometric invariant of a knot. The first general method for 
constructing such a surface was developed by the German mathematician 

a b

c d 
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Seifert [78] in 1935. The genus and the related minimal surfaces hold a central 
position in knot theory and have proved to be valuable tools for treating a 
variety of knot problems [33-36]. 

The Seifert construction begins by considering a two-dimensional surface 
with a single edge that is embedded in three-space [77]. This type of surface 
may be either two-sided such as a disk or one-sided as an Möbius band. The 
two-sided surface is side to be orientable and the one-sided surface is said to be 
nonorientable. Orientable surfaces can be constructed for any knot so that the 
knot is the only edge of the surface. Two surfaces bounded by the trefoil knot 
(knot 31) are shown in Figure 3.3(a) and three surfaces bounded by the 
eight-figure knot (knot 41) are illustrated in Figure 3.3(b) [77]. The knot 31 and 
41 were constructed by using two or three disks to fill in loops in the knots and 
using three or four ribbons with one half-twist to fill in the crossing-point areas, 
then connecting the disks with ribbons in 3-space, respectively.  

The Seifert construction led to the definition of a geometrical invariant 
called the genus [36,37].  It can be proved [33] that the Seifert construction 
has the genus: 

Where, D is the number of disjoint disks, C is the number of components and R 
is the number of ribbons with one half-twist. In particular, C is 1 for the knots 
and C ≥ 2 for the links. It is easy to compute that the knot 31 and 41 are the knot 
of genus one. But the problem is that the knot 31 and 41 are different; to be 
specific, the knot 31 is invertible ( chiral ), but the knot 41 is both invertible and 

 

            

 
Figure 3.3: The Seifert construction of the knot 31 (a) and 41 (b) 
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amphicheiral [34] (achiral) though their genus is the same. How can you tell 
whether the knot 31 and 41 are different? 

Seifert construction involves a structure that possesses a rigid presentation 
and led to the definition of another geometrical invariant called the point group 
[79-81]. This minimal surface of a Seifert construction is almost completely 
characterized by its point group. The point group is more powerful than the 
genus, and it is more likely to distinguish knots that are in fact different. 
Intuitively it is not difficult to see, from Figure 3.3, that the knot 31 has the 
point group C3 whereas the knot 41 has the point group S4.  

The point group is very important in studying molecular structures [82]. In 
chemistry, a molecule is rigorously and precisely determined by the symmetry 
of the molecule or of the environment of the atom. Thus, from symmetry 
considerations alone, we can always tell what the qualitative features of a 
problem must be. We shall know without any quantitative calculations whatever, 
how many states there are and what interactions and transitions between them 
may occur. To put it another way, symmetry considerations alone can give us a 
completely and rigorous answer to the question “what is possible and what is 
completely impossible?”. Symmetry can tell us, in principle, that two states of 
the system must differ in their energy, but only by computation or measurement 
can we determine how great the different will be.   

 In general, molecules are chiral if they lack a center, plane, or axis of 
symmetry. If they have any one of these, they will be superimposable on their 
mirror image. In particular, we define a completely flexible structure to be 
geometrically chiral if and only if its Seifert construction has the point groups 
Cn (n = 1, 2,...). Otherwise, a Seifert construction with Sn symmetry is 
geometrically achiral. Thus, the knot 31 is geometrically chiral and the knot 41 
is geometrically achiral. If Figure 3.3(b) has at least a single colored point, the 
knot 41 will have no symmetry (S1’). In this case, the knot 41 is said to have a 
property of a Euclidean rubber glove. Where S1’ ≡ σ’, we have an operation of 
reversing through the plane in the Seifert construction, where the top frame is 
differentiated from the bottom frame and the effect of applying the same 
reverse operation twice is to bring all vertices into their original positions. 

It is certainly intuitively obvious what we mean when we say that some 
molecules are more symmetric than others are, or that some molecules have 
high symmetry while others have low symmetry or no symmetry. But in order 
to make the idea of molecular symmetry as useful as possible, we must develop 
some rigid mathematical criteria of symmetry. It is also possible to rank the 
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classes of Seifert constructions by “degree of chirality [69] and achirality”: the 
higher the symmetry the greater the degree of achirality; the lower the 
symmetry the greater the degree of chirality. In other words, the point groups 
Cn (n ≥ 2) are normally chiral, the point groups Sn (n = 1, 2,…) are normally 
achiral; whereas the no symmetry C1  (C1 ≡ E) [82] is the most chiral and the 
Euclidean rubber glove (S1’) is the least chiral, and the topological rubber glove 
is the least achiral.   

3.4   Closed Duplex DNA 

The study of the closed duplex DNA began in 1963 with its discovery by 
Dulbecco and Vogt [83]. Vinograd’s group initiated the study of the physical 
properties of circular DNA in 1963 [84], and by 1965, had demonstrated that 
circular DNA extracted from cell is negatively supercoiled [85]. Lebowitz [86] 
described the history of this discovery and several reviews has considered the 
widespread influence of supercoiling on biological functions (Bates and 
Maxwell, 1993 [7]; Vologodskii and Cozzarelli [25], 1994; Stasiak,1996 [27]; 

Drlica, 1992 [87]; Kanaar and Cozzarelli, 1992 [88]; Wang,1992 [89]). 

3.4.1   Circular Duplex DNA in the Crystal 
There are three basis types of DNA double helix [90]: A-, B-, and Z-DNA. 

The B- and A-DNA are right-handed whereas the Z-DNA is left-handed. In the 
Watson-Crick model [1,4] of DNA, the B-DNA has an average of ten base 
pairs per turn of helix; the A-DNA has closer to 11 base pairs per turn. X-ray 
diffraction of single crystals [90-92] indicates that B-DNA and A-DNA, 
respectively, have 10.1 and 11 base pairs per turn (Wing et al, 1980; Conner et 
al, 1982). In 1979 and 1980, Wang [93] and Drew [94] and their co-workers, 
respectively, found that the Z-DNA and Z’-DNA have an average of 12 base 
pairs per turn. Z-DNA was crystallized from low salt and Z’-DNA from high 
salt concentrations [94]. In 1993, Dickerson’s group [95] reported the crystal 
structures of the B-DNA helix as having 10.48 and 10.6 base pairs per turn. 

Recently, the study of mirror image DNA [96] has attracted attention. 
Urata et al. reported [97,98] in 1991 that the conformation of L-d (CGCGCG) 
in solution is the exact mirror-image of the corresponding natural D-hexamer 
under both low and high salt concentrations, and then in 1993 demonstrated the 
three-dimensional structure [99] of a racemic duplex containing both the 
natural left-handed and the unnatural right-handed Z-forms.  
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In order to completely characterize circular duplex DNA we define a DNA 
link [100-101] and denote the number of twists and rungs by T2n and R (r), as 
shown in Figure 3.4 (where n represents the linking number (n = 1, 2,…)). A 
DNA link with 2n half-twists is a molecule shaped like a ladder which is made 
to join itself end-to-end, with r-rungs. Here the sides of the DNA link are 
chains of alternating deoxyribose sugar rings and phosphate groups, and the 
rungs are purinepyrimidine base pairs which are held together by hydrogen 
bonds. Attached to the sugar ring of each nucleotide is one of four bases: 
Adenine (A), guanine (G), thymine (T) or cytosine (C). An A normally on one 
strand is paired with a T on the other by two hydrogen bonds (A = T) and a G is 
paired with a C by three hydrogen bonds (G ≡ C). 

 

 

 
 

Figure 3.4:  The Seifert construction for DNA links 
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The DNA links can be viewed geometrically as a surface of two 
components in two-space (Figure 3.4(a)). This surface is almost completely 
characterized by a Seifert construction and its point group. It is made by using 
two disks to fill in the loop in the DNA link and using 2n ribbons (n = 1, 2,…) 
with one half-twists to fill in the crossing-point areas, and finally connecting 
the disk with the ribbons in three-space (Figure 3.4(b)). In Seifert construction, 
the rungs are arranged in the optimally symmetrical position. From the 
symmetry property of the Seifert construction, we wish to prove that the 
B-DNA links have point groups Cn the 10-base-pairs whenever occur in a 
sequence which repeats itself exactly n times (n = 1, 2,…). Otherwise, they 
have point group C1 (no symmetry). 

Proof: If n = 1 and R (r) = 10, then the T2-DNA link has the point group C1, as 
shown in Figure 3.5(a). Here C1 ≡ E and E represents any combination of 
operations which takes the molecule to a configuration identical with the 
original one. 

 

     

 
Figure 3.5: The Seifert construction for the T2- and T4-DNA links 
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If n = 2 and R (r) = 2 × 10, then the T4-DNA link (Figure 3.5(b)) has the 
point group C2 when   

{{(r1
1, r1

2, r1
3, r1

4, r1
5) = (r3

1, r3
2, r3

3, r3
4, r3

5)}  

and { (r2
1, r2

2, r2
3, r2

4, r2
5) = (r4

1, r4
2, r4

3, r4
4, r4

5)}},  

and has the point group C1 when   

{{(r1
1, r1

2, r1
3, r1

4, r1
5) ≠ (r3

1, r3
2, r3

3, r3
4, r3

5)} 

    and { (r2
1, r2

2, r2
3, r2

4, r2
5) ≠ (r4

1, r4
2, r4

3, r4
4, r4

5)}}.  

If n = k and R (r) = 10k, then the T2k-DNA link (Figure 3.6) has the point 
group Ck when  

{{(r1
1, r1

2, r1
3, r1

4, r1
5) =…= (r1

2j+1, r2
2j+1, r3

2j+1, r4
2j+1, r5

2j+1)}  

and {(r2
1, r2

2, r2
3, r2

4, r2
5) =…= (r1

2j', r2
2j', r3

2j', r4
2j', r5

2j')}}  

(j = 0, 1, 2,…, k-1;  j' = 1, 2,…, k ),  

and has the point group C1 when   

{{(r1
1, r1

2, r1
3, r1

4, r1
5) ≠…≠ (r1

2j+1, r2
2j+1, r3

2j+1, r4
2j+1, r5

2j+1)} 

  and {(r2
1, r2

2, r2
3, r2

4, r2
5) ≠…≠ (r1

2j', r2
2j' , r3

2j', r4
2j', r5

2j' )} }.  

 

 

Figure 3.6: The Seifert construction for the T2k-DNA link 
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Without loss of generality, we can conclude that the T2n-DNA links (R (r) 
= 10n) have the point groups Cn when  

{{(r1
1, r1

2, r1
3, r1

4, r1
5) =…= (r1

2j+1, r2
2j+1, r3

2j+1, r4
2j+1, r5

2j+1)}  

and {(r2
1, r2

2, r2
3, r2

4, r2
5)=…=(r1

2j', r2
2j', r3

2j', r4
2j', r5

2j')}}  

(j = 0, 1, 2,…, n-1; j' = 1, 2,…, n ).  

 

Otherwise, they have only the point group C1, and the linking number, n, 
increases by one (n = 1, 2,…). 

We conclude from this proof that the following corollaries are true. 
 

1. A-DNA links (Figure 3.7) have the point groups Cn when   

{{(r1
1, r1

2, r1
3, r1

4, r1
5) =…= (r1

2j+1, r2
2j+1, r3

2j+1, r4
2j+1, r5

2j+1)} 

and {(r2
1, r2

2, r2
3, r2

4, r2
5, r2

6) =…= (r1
2j', r2

2j', r3
2j', r4

2j', r5
2j', r6

2j')}} 

(j = 0, 1, 2,…, n-1; j' = 1, 2,…, n).  

Otherwise, they have only the point group C1. 

 

 

 

Figure 3.7: The Seifert construction for A-DNA 
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Figure 3.8: The Seifert construction for Z-DNA 

2. Z-DNA links (Figure 3.8) have the point groups Cn when   

{{(r1
1, r1

2, r1
3, r1

4, r1
5, r1

6) =…= (r1
2j+1, r2

2j+1, r3
2j+1, r4

2j+1, r5
2j+1, r6

2j+1)}  

and {(r2
1, r2

2, r2
3, r2

4, r2
5, r2

6) =…= (r1
2j', r2

2j', r3
2j', r4

2j', r5
2j', r6

2j')}} 

(j = 0, 1, 2,…, n-1; j' = 1, 2,…, n).  

Otherwise, they have only the point group C1.   
3. B’-DNA links (Figure 3.9) have the point groups Cn/2 when  

{{(r1
1, r2

1, r3
1, r4

1, r5
1) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3, r6

3) =…= (r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3, r6

4j+3)}, 

{(r1
2, r2

2, r3
2, r4

2, r5
2) =…= (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)}  

and {(r1
4, r2

4, r3
4, r4

4, r5
4) =…= (r1

4j', r2
4j', r3

4j', r4
4j', r5

4j')} }  

(j = 0, 1, 2, …, m - 1; j' = 1, 2, ..., m).  

Otherwise, they have only the point group C1, and the linking number increases 
by two (n = 2m, m = 1, 2,…). In 1978 the mathematician Fuller [14] first noted 
the occurrence of causing even-number changes in the linking number. 

In general, it is possible to synthesize artificial DNAs [90] with the point 
groups Cn. In particular, natural DNA sequences do not satisfy a condition of 
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Figure3. 9: The Seifert construction for B’-DNA (R(r) = 10.5n = 21m) 

regular repetition and have only a point group C1. Thus, DNA links have some 
features which are regular, and some which are irregular. It is obvious that the 
Cn (n ≥ 2) symmetries are very regular and the C1 symmetry is completely 
irregular. The fusion of regular and irregular features is achieved admittedly 
only at the expense of the symmetry conformation.  Such phenomena (Cn/2 or 
Cn → C1) are said to have the properties of intramolecular symmetry breaking, 
the intramolecular symmetry breaking being a mechanism in which a system by 
itself goes from a highly symmetric conformation to a nonsymmetric one. 
On the other hand, the point groups Cn/2 or Cn tell us that the T4n-DNA links are 
chiral and the twin forms are often distinguished by calling one “right” and 
other “left”. No amount of inspection or measurement of one will disclose a 
property not possessed by the other, yet the two are clearly quite different. The 
numbers of right- and left-handed forms will be equal, in principle, and the 
state will be chirally symmetric. However, these processes are not observed in 
the natural DNA. Ordinarily, the natural left-handed B and A helix as well as 
the right-handed Z helix do not appear in the crystal. We cannot move the 
right-handed B and A helix within three-space to create the left-handed B and A 
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helix, and also cannot move the left-handed Z helix so as to create the 
right-handed Z helix. The symmetry between left- and right-handed DNA is 
broken spontaneously, the numbers of left- and right-handed forms are unequal, 
and the state is therefore chirally asymmetric. Such phenomena are said to have 
the property of intermolecular symmetry breaking [62]. The significance of 
intermolecular symmetry breaking is that mirror symmetry is always absent in 
natural B-DNA, A-DNA and Z-DNA, etc. The natural B-, A-, and Z-DNAs 
usually do display a preference for one kind of chirality over another (Figure 
3.10). Furthermore, right- and lift-handed DNA must differ with regard to 
physical properties, such as energy, that depend on their handedness. 

 The situation is now clear about circular duplex DNAs being 
geometrically chiral. Yet we cannot move the right-handed DNA within 
three-space to create the left-handed DNA, and vice versa. How then does the 
chirality arise? How might intermolecular symmetry breaking have arisen in 
living systems? We shall attempt to answer this question, insofar as it is 
possible to answer it, beginning at the level of particles in solution.  

3.4.2   The Hydration Structure of B-DNA 
Water is an important factor in helix structure (for reviews, see Dickerson 

et al., 1982 [102]; and Dickerson, 1983 [90]; Berman, 1991 [103]; 1994 [104]). 
Solution measurements [105-106] and theoretical calculation [107] show that  

 

 

                                 
Figure 3.10: The natural B-, A-, and Z-DNAs usually display a preference for one kind 

of chirality over another. 
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for DNA molecules in solution the strands of the double helix make a full turn 
every 10.5 base pairs (Wang, 1979; Rhodes and Klug, 1980; Levitt, 1978). 

The water structure has been examined in molecules of all three forms of 
the DNA double helix [90].  Detailed analyses of the water structure in 
crystalline DNA have been reported mainly from high-resolution studies of 
B-DNA helices [108] (Drew and Dickerson, 1981). The hydrating molecules 
are invisible to X-ray analysis [102], which can see only the average structure 
over all molecules, and hence only the ordered solvent positions. But cooling 
the crystals to 16 K [109], or transferring CGCGAATTCGCG crystals to 60 
percent MPD (methylpentanediol), lowers the temperature factors and produced 
localized hydration along the backbone [102]. It is clear that the helix of 
B-DNA in solution is coated with a layer of water molecules [90], as showed in 
Figure 3.11.  

In recent years the interest in hydration of DNA has increased and the role 
of water in DNA conformational transitions was well understood. Detailed 
studies on A-DNA hydration have been reported (Kennard et al., 1986 [110]; 
Eisenstein et al., 1990 [111]; 1995 [112]). Numerous experimental and 
theoretical attempts have been made to quantify hydration for different DNA 
conformations, and some of the several newer results can be found in Refs. 
[113-117] (e.g., Schneider et al., 1993[113]; Lipscomb et al., 1994 [114]; 
Schneider and Berman, 1995 [115]; Hummer et al., 1995 [116]; Denisov et al., 

 
 

       
Figure 3.11: The hydration structure of B-DNA double helix coated with a layer of 

water molecules. Figure adapted from Ref. [90]. 

 

water 
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1997 [117]). No comparable systematic water structure has been found around 
either the A or the Z helix. Although water molecules are distributed liberally 
around atoms on the DNA that could take part in hydrogen bonds, there is 
nothing that is comparable to the minor groove spine of hydration in B-DNA 
and that could be expected to have structural integrity [90]. 

The Seifert constructions for DNA hydration structures are made by using 
the third disk in the middle of the previous Seifert constructions in the crystal to 
fill in the loop which represents a layer of water molecules [100-101]. 
Pictorially we represent this as in Figure 3.12. We wish to prove that the 
B-DNA hydration structure has the properties of a Euclidean rubber glove if the 
21-base pairs occur in a sequence which repeats itself exactly m (or n/2) times 
(n = 2m, m = 1, 2,…).  

 We can prove that the structures in Figure 3.13 and 3.14 have the point 
groups Sn/2 (or Sm) if they satisfy the following conditions: 

1. There are a Cn/2 symmetric axis for the T2n hydration structures when  

{{(r1
1, r2

1, r3
1, r4

1, r5
1) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3, r6

3) =…= (r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3, r6

4j+3)}, 

{(r1
2, r2

2, r3
2, r4

2, r5
2) =…= (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)} 

 

      

Figure 3.12: The Seifert constructions for the B-DNA hydration structure 
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and {(r1
4, r2

4, r3
4, r4

4, r5
4) =…= (r1

4j', r2
4j', r3

4j', r4
4j', r5

4j')} }  

(j = 0, 1, 2, …, m - 1; j' = 1, 2, …, m).  

Here the linking number increases by two (n = 2m, m = 1, 2,…).   
2. There is a symmetry plane when the vertices are the non-Watson-Crick base 

pairs. This means that the bases A, C, G and T on one strand must be in 
one-to-one correspondence with A, C, G and T on the other. 

 

      

Figure 3.13:  The Seifert construction for the T4- and T8-hydration structures 

 

            

                      

 
Figure 3.14:  The Seifert construction and its symmetric state for the T2n-hydration 

structures 
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However, the second condition above is not satisfied because two strands 
of DNA are self-complementary: Adenine (A) normally is paired with thymine 
(T) and guanine (G) is paired with cytosine (C). Here we show that objects with 
non-Watson-Crick base pairs have the point groups Sn/2, while the others with 
Watson-Crick base pairs have no symmetry but possesses a reverse operation 
(S1’ = σ’) which makes the top frame in the Seifert construction into a bottom 
frame. We have thus shown that the B-DNA hydration structure is a Euclidean 
rubber glove.  

The Euclidean rubber glove tells us that the B-DNA hydration structure is 
the least chiral and the state will be achiarlly symmetric. We can now move the 
right-handed B helix within three-space to create the left-handed B helix in 
solution. One would expect equal numbers of right-handed and left-handed B 
helix to inhabit the living systems. Yet DNA usually displays a preference for 
chirality over achirality [118]. For some time it has seemed possible that the 
enzymes, designed to act on left-handed molecules, could not copy 
right-handed ones although the least chiral object and its mirror image are the 
nearly same.  

According to this view, the hydration structure of B-DNA developed as a 
singular event, and did not possess the strongly chiral chemistry characteristic 
of modern life and so incorporated only a slight chiral asymmetry. It must be 
pointed out that the loop constructed by H2O in the Seifert construction is an 
interface for the exchange of information and reaction with the environment 
[119]. The interface is unstable because it may not only disappear but can also 
be reconstructed by changed conditions. 

3.4.3   Structural Transition in DNA 
The observed solvent positions in three crystal structures have confirmed 

earlier fiber and solution measurements, and have led to proposals that have 
explained the transitions from B to A and from B to Z [120] helices. Two 
characteristic X-ray fiber patterns are observed when stretched fibers are dried 
[102]: the B pattern around 92 percent relative humidity (RH) and the A pattern 
when the fiber is dried to 75 percent RH in the absence of salt. Further dying 
below 55 percent RH leads to increasing disorder and deterioration of the 
quality of the diffraction pattern. The B form is stabilized by salt: a 10 percent 
salt content by weight is sufficient to prevent appearance of the A pattern no 
matter how low the RH, but with a salt content of 0.4 percent or less the A form 
can be observed to persist all the way up to 98 percent RH. One now has a clear 
molecular picture of the reasons for the B form’s prevalence under most 
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general aqueous conditions [90] and for the transition to the A form as a result 
of dehydration [121].  

The B-to-A helix conversion [122] takes place in a narrow humidity 
range, with a midpoint between 75 and 83 percent RH. Beyond about 80 
percent RH, the grooves are completely filled with liquid water so that further 
hydration causes the fibers to swell [102]. In any case, high salt favors the 
transition of B to Z [123,124] but not of B to A. Under special conditions of 
stress, right-handed DNA with the purine-pyrimidine alternating sequence can 
be flipped over into the left-handed Z state [90]. Behe and Felsenfeld’s results 
have indicated [123] that the spectral transition from the B to the Z form occurs 
at much lower salt concentrations, close to the usual physiological conditions. 
Peck and Wang’s results shown [124] that negative supercoiling of the DNA 
changes the alternating C-G sequence from a right-handed helix with 10.5 base 
pairs (bp) per turn to a left-handed helix with 11.6 bp per turn under 
physiological conditions.  

It is also interesting to note that the B-, A-, and Z-DNA differ in the 
number of rungs when the linking number is fixed. Accordingly, the difference 
between the two states is called the rung difference, i.e. 

Where R1 (r) and R2 (r) are the numbers of rungs (base pairs) in the first and the 
second state, respectively. Supercoiling [16,17] is a precondition for DNA 
transition, replication and recombination. A ring for which R (r) = 10.5n is said 
to be relaxed. Increasing or decreasing the ratio strains the double helix, which 
responds by supercoiling [16]. Negatively supercoiled (left-handed) [125] DNA 
rings are known to be common in intact cells, but positively supercoiled  
(right-handed) rings have been made only in the laboratory [17]. It should be 
noted that if one stranded of a supercoiled ring of either kind is cut, the 
molecule returns to the relaxed state. 
In order to understand how the number of rungs influences the configuration 
and physical properties, it is necessary to appreciate the mechanism of enzymes 
and ethidium molecules (for reviews, see Bauer et al., 1980 [16]; and Wang: 
1982 [17]; 1985 [126]; 1996 [127]). The enzymes can convert rings of DNA 
from one topological form to another and a single topoisomerase molecule can 
carry out the complete operation of breaking and resealing. There are two kinds 
of topoisomerase: one kind cuts a single strand of DNA; the other cuts two 
strands simultaneously. Ethidium, a planar molecule, slides between two base  

).()( 12 rRrRr −=∆
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pairs when it binds to the double helix. Each molecule of bound ethidium 
unwinds the double helix by about 26 degree [17], and so one or two ethidium 
molecules move the number of rungs by one. This is because the mean helical 
twist angle [90] from one base pair to next for A- and B-DNA is 33.1 and 35.9 
degrees, and for Z-DNA is –51.3 (G-C) and –8.5 degrees (C-G), respectively.  

We now suggest two mechanisms, shown in Figure 3.15 and 3.16, to 
describe the transitions first from B to A and secondd from B to Z helices, 
respectively. There are some clear instances in which the least chiral symmetry 
causes the most chiral asymmetry. These results lead us to infer that the 
chirality of DNA is an artifact of the life process. Further, it also provides a 
sound basis for the investigation of key questions about the origin of chiral  

                         

        

        

      

                      

Figure 3.15: Topological conversions for the right-handed helix 

 

∆r=22m-21m=+m 

dehydration 

dehydration 

∆r=20m-21m=-m 
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Figure 3.16: Topological conversions for the left-handed and right-handed Z helix A: 

left-handed B-DNA→left-handed Z-DNA; B: right-handed B-DNA→right-handed 

Z-DNA 
asymmetry in life. We now have a clear molecular picture of the reasons for 
B-DNA stabilization by hydration and for the transition to the B- and A-DNA 
crystal forms as a result of dehydration with DNA supercoiling (Figure 3.15). It 
is worthwhile to note that the transitions from B to Z helices go through a 
three-step process (Figure 3.16). Our results also reveal the important fact that 
the structural phase transition takes place in DNA links when symmetries are 
changed from S1’ to C1 or Cn and that geometrical chirality remains unchanged 
when rungs are cut down (Figure 3.17) by chemical reaction in DNA links. 
Intermolecular symmetry breaking is a mechanism by which a DNA link, acted 
upon by enzymes and ethidium molecules, goes from a symmetric state (Figure 
3.14) to an asymmetric one (Figure 3.15, 3.16 and 3.17). The symmetric state is 
one with equal numbers of left- and right-handed forms; the asymmetric state is 
one in which one form dominates. 

3.5   Single-Stranded DNA Knots 
The observation of a knotted single-stranded DNA ring was first made by  

∆r=22m-21m=+m 

supercoiling 

∆r=23m-22m=+

∆r=24m-23m=+m 

or
low-salt  
solution 

low- or high- 
salt solution 
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Figure 3.17: The Seifert constructions for the B-, A- and Z-DNA in which rungs are cut 

down by chemical reaction 

Liu, Depew and Wang in 1976 [128], when circular fd DNA was treated with 
E.coil ω. In recent years, Seeman’s group [129-135] has demonstrated in a 
most impressive manner how DNA can be used for the construction of 
topologically complex non-natural structures. The design and realization of a 
synthetic knot comprised of a single-stranded DNA molecule was described in 
1991 [129]. Exciting advances have recently been made in the study and 
control of single-stranded DNA knots [134,135], e.g., knot 31 and knot 41. It 
was found that the trefoil knots formed by single-stranded DNA have two 
forms, containing either a left-handed form or a right-handed form. Seeman and 
his co-workers[132] have synthesized molecules containing 104,96,88,80,74,70 
and 66 nucleotides. Helix repeats of DNA double helices are very well 
understood, e.g., S-, D-, C-, B-, A-, and Z-DNA have about 6, 8, 9, 10,11 and 
12 base pairs for each turn (360°) of the double helix, respectively (for a review, 
see Leslie et al., 1980 [136]). But how many bases per half-twist (180°) do 
DNA knots have in solution? We shall try to answer this question from the 
symmetry perspective. 

Doubled knots with q half-twists were introduced by Whitehead [137] in 
1937 and formed an interesting class of knots with respect to certain invariant 
(Figure 3.18). It is interesting to note that the single-stranded DNA knots can be 
described as double knots [138]. Single-stranded DNA knots can be divided 
into two types depending on whether the twisting number is 2n + 1 or 4n. For 
convenience, we denote the number of twists and vertices by T2n+1, T4n (n = 1, 
2,…) and Vp (nucleotide subunites), respectively. Our goal here is to construct 
some point groups pertaining to the single-stranded DNA knots on the basis of 
the Seifert construction in knot theory [77]. 

3.5.1 T2n+1 DNA Knots 
The Seifert constructions for the T2n+1 single-stranded DNA knots can be 

made by using two disks to fill in two loops in the knot and using 2n +1 ribbons  
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left-handed                  right-handed 

Figure 3.18: Doubled knots with q half-twist 

 
with one half-twist to fill in the crossing-point areas, and then connecting the 
disks with the ribbons in three-space. It is enough to prove that the T2n+1 
single-stranded DNA knots have point groups C2n+1 when   

 
Otherwise, they have the point group C1. Where E represents the segment edge 
on the Seifert construction and p represents the number of vertices (bases) on 
the segment edge. Some examples are given in Figure 3.19.  

In the case of Figure 3.19(a), if  
E1 (p1) = E5 (p1) = E9 (p1), E2 (p2) = E6 (p2) = E10 (p2), 

  E3 (p3) = E7 (p3) = E11 (p3) and E4 (p4) = E8(p4) = E12(p4), 
then the T3 DNA knot has the point group C3. Hence, the knot 31 satisfies the 
following conditions: 
1. p1 = p2 = p3 = p4 and p1 = 1, 2, …, 10, and Vp = 12, 24, 36, 48, 60, 72, 84, 96, 

108, 120.  

   (2n + 1)4I          if p1 = p2 = p3 = p4 = 1, 2, …, 10; I = 1, 2, …, 10. 

   (2n + 1) (4I + 1)     if p1 = p2 = p4 = 1, 2, … , 9; 

                       p3 = ( p1 + 1 )=2, 3, …, 10; I = 1, 2, …, 9. 

   (2n + 1) (4I + 2)     if p1 = p3 = 1, 2, … , 9;  

p2 = p4 = (p1 + 1)=2,3,…, 10; I = 1,2,…, 9. 

(2n + 1) (4I + 3)     if p1 = p2 = p4 = 2, 3,…, 10;  

p3 = (p1-1) = 1, 2,…, 9; I = 1, 2,…, 9.  
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Figure 3.19: The Seifert construction for the T2n+1 DNA knots that have the point 

groups C2n+1 

 

 

2. p1 = p2 = p4, p1=1,2,…,9 and p3 = (p1 + 1) = 2, 3, …, 10, and Vp = 15, 27, 39, 
51, 63, 75, 87, 99, 111. 

3. p1 = p3  = 1, 2,…,9 and p2 = p4 = (p1 + 1) = 2, 3, …, 10, and Vp = 18, 30, 42, 
54, 66, 78, 90, 102, 114. 

4. p1 = p2= p4, p1 = 2, 3, …,10 and p3 = p4 = ( p1 - 1) = 1, 2 , ...,9, and Vp = 21, 
33, 45, 57,69, 81, 93, 105, 117.  

Otherwise, the T3 DNA knot has the point group C1.  
These results tell us that the trefoil knots containing 66 and 96 

nucleotides have C3 symmetry and that the trefoil knots containing 70,74,80,88 
and 104 nucleotides have C1 symmetry. This is the reason the 96 nucleotides (p1 

= p2 = p3 = p4 = 8 and 3 × 32 = 96) generates the best yield for trefoil knot (87%) 
[132]. Thus, there are about 11 and 16 bases per half-turn for the 66- and 
96-mers, respectively. However the trefoil knots, which have the 10,12,13,14 
and15 bases per half-turn (p1 + p2) for the 60-, 72-, 78-, 84- and 90-mers 
respectively, are a target for the future experimental syntheses.  
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3.5.2   T4n DNA knots 
The Seifert construction for T4n knots can be made by using three disks to 

fill in two loops in the knot and using 4n ribbons with one half-twist to fill in 
the crossing-point areas, and then connecting the disks with the ribbons in 
three-space. It is safe to say that the T4n single-stranded DNA knots have point 
groups S4n when   

 

Otherwise, they have no symmetry (S1’). Some examples are given in Figure 
3.20.   
 
 

 
Figure 3.20: The Seifert construction for the T4 and T8 DNA knots 

 

 

   4n × 4I = 16nI    if p1 = p2 = p3 = p4 = 1, 2,…, 10; I = 1, 2,…, 10.    

(4n) (4I + 1)      if p1 = p2 = p4 = 1, 2,…, 9;  

p3 = (p1+1) = 2, 3,…, 10; I = 1, 2,…, 9. 

(4n) (4I + 2)      if p1 = p3 = 1, 2,…, 9;  

p2 = p4 = (p1+1) = 2, 3,…, 10; I = 1, 2,…, 9. 

(4n) (4I + 3)      if p1 = p2 = p4 = 2, 3,…, 10;  

p3 = (p1-1) = 1, 2,…, 9; I = 1, 2,…, 9.  
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In Figure 3.20(a), if the sets 

{ E1 (p1)=E5 (p1)=E9 (p1)=E13 (p1), E2 (p2) 
=E6 (p2)=E10 (p2)=E14 (p2), E3 (p3)=E7 (p3)=E11 (p3)=E15 (p3)  
and E4 (p4)=E8 (p4)=E12 (p4)=E16 (p4) }  
 

are valid, then the T4 DNA knot has the point group S4. The S4 symmetry must 
take the form: 

1. p1 = p2 = p3 = p4,  p1 = 1, 2, …, 10, and Vp = 16, 32, 48, 64, 80, 96, 112, 128, 

144. 

2. p1 = p2 = p4,  p1 = 1, 2, …, 9, p3 = ( p1 + 1 ) = 2, 3, …, 10, and Vp = 20, 36, 

52, 68, 84, 100, 116, 132, 148. 

3. p1 = p3 = 1, 2, …, 9, p2 = p4 = ( p1 + 1 ) = 2, 3, …, 10, and Vp = 24, 40, 56, 

72, 88, 104, 120, 136, 152. 

4. p1 = p2 = p4, p1 = 2, 3, …, 10, p3 = ( p1 – 1 ) = 1, 2, …, 9, and Vp = 28, 44, 

60, 76, 92, 108, 124, 140, 156. 

              

Otherwise, the T4 DNA knot has no symmetry (S1’).  
The above results tell us that the figure-eight knots containing 80, 88, 96 and 
104 nucleotides have S4 symmetry and the figure-eight knots containing 66, 70 
and 74 nucleotides have no symmetry (S1’). This is the reason the 96 
nucleotides (p1 = p2 = p3 = p4 = 6 and 4 × 24 = 96) generate the best yield for 
figure-eight knot (71%) [132]. Thus, there are about 10, 11, 12 and 13 bases per 
half-turn (p1 + p2) for the 80-, 88-, 96-, and 104-mers, respectively.  

As has been said above, the T2n+1 DNA knots have the point groups C2n+1 
and are chiral, while the T4n DNA knots have the point groups S4n and are 
achiral. The others, C1 or S1’, are the most chiral or the least chiral. 

On the other hand, if Vp is the same but the bases are different in 
equivalent positions, e.g., if 

{p1
1,p1

2,p1
3,p1

4,…≠ p2
1,p2

2,p2
3,p2

4,…≠ p3
1,p3

2,p3
3,p3

4,…≠ p4
1,p4

2,p4
3,p4

4,…},  

then the T2n+1 and T4n DNA knots have no symmetry and are C1 and S1’, 
respectively.  
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3.6   Duplex DNA Knots 
Duplex DNA knots are well known in molecular biology [7,139-143] and 

many excellent discussions have appeared concerning this subject from 
Cozzarelli’s group [144-151]. In 1983 Krasnow et al. found [145] that the 
trefoil knots formed by duplex DNA can have two forms, containing either 
left-handed supercoils or right-handed supercoils. In 1985 Spengler et al. [149] 
determined the structure of the duplex DNA knots 31, 51, 71, 91, 111, 131, 151, 
171, 191, 211, 231, etc. More recently, Rybenkov et al. [151] shown that duplex 
DNA knots are formed below equilibrium values by type Ⅱtopoisomerases. 
Shaw and Wang found [152] that supercoiling of a DNA trefoil perturbs 
differently the spatial writhe of its two chiral forms. Also, Stasiak et al. 
[153-155] reported the result of computer simulations which show that there is 
a linear relationship between the speeds of migration of different types of 
duplex DNA knots and the average crossing numbers of their ideal geometrical 
representations. 

Topological structures of duplex DNA knots [156] have been investigated 
as an interesting class of superstructures [31], with the aim of understanding at 
a fundamental level the ways in which simple components come together to 
form larger and more complex assemblies and arrays. To solve the problem, we 
shall first divide duplex DNA knots into two sections depending on whether the 
twisting number is T2n+1 or T4n (n = 1, 2,K), then introduce Seifert 
constructions for the duplex DNA knots, and finally discuss the implications of 
the model for real DNA. The molecular Seifert construction and its molecular 
symmetry may help us better understand and predict sequence/structure 
relationships, and open the door to controlling the supermolecular design and 
assembly of duplex DNA knots. 
3.6.1   T2n+1 Duplex DNA Knots 

The Seifert construction is a good mathematical model of the concrete 
molecular knot and is defined as a minimal surface with the lowest genus. The 
duplex DNA knots are considered as embedded in the Seifert construction in 
the most natural way, and so they have extremely simple, regular point groups 
that characterize them almost completely. Now is surely a time of special 
opportunity to deepen our fundamental knowledge of why and how knotting 
phenomena take place in living organisms. 

In order to explain our results we first define some terms as follows: the 
total linking number of duplex DNA is defined as the product of the twisting 
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number of the duplex DNA knots and the local linking number of the duplex 
DNA which is distributed in steps of two. The local twisting number in the 
double helix is changed by four or by multiples of four, this being because the 
linking number is changed by two or by multiples of two [14,17] in topological 
reactions. We know that the linking number multiplied by 2 gives the twisting 
number [7], and that the local linking number of duplex DNA is controlled by 
the twisting number of supermolecular knots. This can be expressed as follows: 
Ltotal = 2(2n + 1)m, Tw = (2 × 2m)(2n + 1) = 4(2n + 1)m (n = 1, 2,…; m = 1, 2,..., 
∞), and also visualized as in Figure 3.21. As described below, the total linking 
number (Ltotal) satisfies the topological requirement for Seifert construction and 
the total twisting number is defined as the number of generators on a minimal 
surface. Further, the total base pairs number in supermolecular knots is defined 
as R (r) = 10.5Ltotal = 21(2n + 1)m or R (r) = 10.0Ltotal = 20(2n + 1)m, 
considering that there are 10.5 or 10.0 base pairs for each turn of the double 
helix. 

The T2n+1 duplex DNA knots can be viewed geometrically as the double 
edges, or double boundaries, of a two-dimensional surface. The molecular 
Seifert constructions are assembled by using two disks to fill in two loops in the 
supermolecular knots (e.g., 31, 51, 71, 91,…) [33] and then using 2n + 1 ribbons 
(n = 1, 2,...) with one half-twist to fill in the crossing-point areas, and finally 
connecting the disks with ribbons in three-space. Double edges represent two 
strands of DNA double helix coated with a layer of water molecules, and are 
made by using 4(n + 1)m (n = 1, 2,…; m = 1, 2,...) ribbons with one half-twist to 
fill in the crossing-point areas in the double helix. 

We shall use mathematical induction to prove that the T2n+1 duplex DNA 
knots have either C2n+1 symmetry or C1 symmetry for all positive integer n when 

 
Figure 3.21: Cartoon representation of the T2n+1 duplex DNA knots.Here 2n+1 

represents the twisting number of a supermolecular knot, 2m represents the local 

linking number of a duplex DNA (m=1,2,…, ∞), and "r" is a collection of the base pairs 

which are held together by hydrogen bonds.. 
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the 21- and 20-base-pairs occur in a sequence which repeats itself exactly 2n+1 
times. 

For example, if n = 1, Ltotal = 6m, Tw = 12m and R (r) = 63m (Figure 3.22), 
then the T2n+1 duplex DNA knots have C3 symmetry because they can be rotated 
three times when  

{{ (r1
1, r2

1, r3
1, r4

1, r5
1) = (r1

5, r2
5, r3

5, r4
5, r5

5) = (r1
9, r2

9, r3
9, r4

9, r5
9)},  

{(r1
3,r2

3,r3
3,r4

3,r5
3,r6

3) = (r1
7,r2

7,r3
7,r4

7,r5
7,r6

7) = (r1
11,r2

11,r3
11,r4

11,r5
11,r6

11)},  

{(r1
2, r2

2, r3
2, r4

2, r5
2) = (r1

6, r2
6, r3

6, r4
6, r5

6) = (r1
10, r2

10, r3
10, r4

10, r5
10)}  

and {(r1
4, r2

4, r3
4, r4

4, r5
4)=(r1

8, r2
8, r3

8, r4
8, r5

8)=(r1
12, r2

12, r3
12, r4

12, r5
12 ) }}.   

 

 

 
Figure 3.22: The Seifert construction for the T3 duplex DNA knot that has C3 symmetry. 

Here "r” represents T = A or G ≡ C (“=" or "≡" represents the number of hydrogen 

bonds). Note that 
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and that m4j+1 and m4j+3 are, respectively, arranged in the boundaries of the bottom and 

top disks, and that the others, m4j+2 and m4j’, are unmarked in the crossing-point areas 

of the knot 31. 
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They have C1 symmetry when  

{{(r1
1,…, r5

1) ≠ (r1
5,…, r5

5) ≠ (r1
9,…, r5

9 )}, 

{(r1
3,…, r6

3) ≠ (r1
7,…,  r6

7) ≠ (r1
11,…,  r6

11 )}, 

{(r1
2,…, r5

2 ) ≠ (r1
6,…, r5

6 ) ≠ (r1
10,…, r5

10)} 

    and {(r1
4,…, r5

4 ) ≠ (r1
8,…, r5

8 ) ≠ (r1
12,…, r5

12 )}}. 

If n = 2, Ltotal = 10m, Tw = 20m and R (r) = 105m (Figure 3.23), then the T5 

duplex DNA knot has C5 symmetry when  

{{(r1
1,…, r5

1) = (r1
5,…, r5

5) = (r1
9,…, r5

9) = (r1
13,…, r5

13) = (r1
17,…, r5

17)}, 

{(r1
3,…,r6

3)=(r1
7,…,r6

7)= (r1
11,…, r6

11)=(r1
15,…, r6

15) = (r1
19,…, r6

19)}, 

{(r1
2,…, r5

2)= (r1
6,…, r5

6) = (r1
10,…, r5

10) = (r1
14,…,r5

14) = (r1
18,…, r5

18)} 

and {(r1
4,…, r5

4) = (r1
8,…, r5

8)=(r1
12,…, r5

12) = (r1
16,…, r5

16) 

= (r1
20,…, r5

20)}},  

 

 
Figure 3.23: The Seifert construction for the T5 duplex DNA knot that has C5 symmetry. 

Note that 
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and that m4j+1 and m4j+3 are, respectively, arranged in the boundaries of the bottom and 

top disks, and that the others, m4j+2 and m4j’, are unmarked in the crossing-point areas 

of the knot 51. 
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and has C1 symmetry when  

{{m1 ≠ m5 ≠ m9 ≠ m13 ≠ m17}, {m3 ≠ m7 ≠ m11 ≠ m15 ≠ m19},  

{m2 ≠ m6 ≠ m10 ≠ m14 ≠ m18}  and  {m4 ≠ m8 ≠ m12 ≠ m16 ≠ m20}}. 

If n = k, Ltotal = 2(2k + 1)m, Tw = 4(2k + 1)m and R (r) = 21(2k + 1)m 
(Figure 3.24), then the T2k+1 duplex DNA knot has C2k+1 symmetry because it 
can be rotated by 2k+1 times when  

{{ (r1
1, r2

1, r3
1, r4

1, r5
1)=…=(r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3, r6

3)=…=(r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3

, r6
4j+3)},  

{(r1
2, r2

2, r3
2, r4

2, r5
2)=…=(r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)}  

and {(r1
4, r2

4, r3
4, r4

4, r5
4)=…= (r1

4j’, r2
4j’, r3

4j’, r4
4j’, r5

4j’)}},  

 

 

    

 

Figure 3.24:  The Seifert construction for the T2k+1 duplex DNA knot that 
has C2k+1 symmetry. Note that 
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and that m4j+1 and m4j+3 are, respectively, arranged in the boundaries of the 
bottom and top disks, and the others, m4j+2 and m4j’, are unmarked in the 
crossing-point areas of the T2k+1-knot. 
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and has only a C1 symmetry when  

{{m1 ≠ m5 ≠ m9 ≠…≠ m4j+1},{m3 ≠ m7 ≠ m11 ≠…≠ m4j+3},  

{m2 ≠ m6 ≠ m10 ≠…≠ m4j+2} and {m4 ≠ m8 ≠ m12 ≠…≠ m4j'}}            

(j = 0, 1,…, 2k ; j' = 1, 2,…, 2k+1 ). 

Without loss of generality, we can conclude that the T2n+1 duplex DNA 
knots have C2n+1 symmetry (n = 1, 2,…) if and only if  

{m1 = m5 =…= m4j+1}, {m3 = m7 =…= m4j+3},  

{m2 = m6 =…= m4j+2} and {m4 = m8 =…= m4j'},  

and have C1 symmetry if and only if  

{m1 ≠ m5 ≠…≠ m4j+1}, {m3 ≠ m7 ≠…≠ m4j+3},  

{m2  ≠ m6 ≠…≠ m4j+2} and {m4 ≠ m8 ≠…≠ m4j'}  

(j = 0, 1,…, 2n; j' = 1, 2,…, 2n+1). 

 

We conclude from the proof above that the following corollary is true. 
If Ltotal = 2(2n + 1)m, Tw = 4(2n + 1)m and R (r) = 2 × 10(2n + 1)m = 20(2n 

+ 1)m, then the T2n+1 duplex DNA knots have C2n+1 symmetry when  

{{ (r1
1, r2

1, r3
1, r4

1, r5
1) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3

 ) =…= (r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3 )},  

{( r1
2, r2

2, r3
2, r4

2, r5
2

 ) =…= (r1
4j+2, r2

4j+2, r3
4j+2, r4

4j+2, r5
4j+2)}  

and {( r1
4, r2

4, r3
4, r4

4, r5
4) =…= (r1

4j’, r2
4j’, r3

4j’, r4
4j’, r5

4j’)} }.  

Conversely, if we suppose that  

{{m1 ≠ m5 ≠…≠ m4j+1}, {m3 ≠ m7 ≠…≠ m4j+3},  

{m2 ≠ m6 ≠…≠ m4j+2} and {m4 ≠ m8 ≠…≠ m4j'}}  

(j = 0, 1,…, 2n; j' = 1, 2,…, 2n+1 ),  

then the T2n+1 duplex DNA knots have only C1 symmetry. 
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The point groups C1 or C2n+1 tell us that the duplex DNA knots are chiral 
and their states will be chirally symmetric. Therefore, right-handed and 
left-handed DNA knots are different in the sense that we cannot move the 
right-handed DNA knots within three-space to create the left-handed DNA 
knots. However, the symmetric balance between the two types of the natural 
DNA molecules is unstable and spontaneously evolves into an asymmetric state 
in which one type dominates. Mirror symmetry is, thus, often absent in natural 
duplex DNA knots: right-handed T2n+1 duplex DNA knots far outnumber 
left-handed ones. Intramolecular and intermolecular symmetry breaking always 
takes place in T2n+1 duplex DNA knots. 

 
3.6.2   T4n Duplex DNA Knots 

In contrast with T2n+1 duplex DNA knots, the T4n duplex DNA knots can be 
described as double knots (Figure 3.18) with double edges and have a different 
Seifert construction which uses three disks to fill in three loops in the 
supermolecular knots (e.g., 41, 818,…) [33] and 4n ribbons (n = 1, 2,...) with one 
half-twists to fill in the crossing-point areas, and then connecting the disks with 
the ribbons in three-space. For convenience, we denote the local linking and 
twisting number by 2m and 4m (m = 1, 2,…), respectively. Thus the total linking 
and twisting numbers of duplex DNA in supermolecular knots are defined as 
Ltota l= 2m × 4n = 8nm and Tw = 2 × 2m × 4n = 16nm, respectively. Also, the total 
base pairs number is defined as R (r) = 10.5Ltotal = 10.5 × 8nm = 84nm or R (r) = 
10.0Ltotal = 10 × 8nm = 80nm (n = 1, 2, K; m = 1, 2, K, ∞).  

We shall use mathematical induction to prove that T4n duplex DNA knots 
have either S4n symmetry or no symmetry (S1’) for all positive integers n if and 
only if the 21- and 20-base-pairs occur in a sequence which repeats itself 
exactly 4n times. 

For example, if n = 1, Ltota = 8m, Tw = 16m and R (r) = 84m (Figure 3.25), 
then the T4 duplex DNA knot has S4 symmetry because it can be reversed up 
and down (i.e., a rotation by 90° followed by a reflection takes this operation to 
itself). In this case, we wish to show that the sets 

{{(r1
1,…, r5

1) = (r1
5,…, r5

5) = (r1
9,…, r5

9) = (r1
13,…, r5

13)}, 

{(r1
3,…, r6

3) = (r1
7,…, r6

7) = (r1
11,…, r6

11) = (r1
15,…, r6

15)}, 

{(r1
2,…, r5

2) = (r1
6,…, r5

6) = (r1
10,…, r5

10) = (r1
14,…, r5

14)} 

and {(r1
4,…, r5

4) = (r1
8,…, r5

8) = (r1
12,…, r5

12) = (r1
16,…, r5

16)}}  
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Figure 3.25:  The Seifert construction for the T4 duplex DNA knot that has S4 

symmetry. Note that 
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and that m4j+1 is arranged in the boundaries of the bottom and top disks and m4j+3 is in 

the middle of the disk, and that the others, m4j+2 and m4j’, are unmarked in the 

crossing-point areas of the knot 41(mi = 1, 2,..., ∞). 

are valid. Conversely, if we suppose that 

{{(r1
1,…,r5

1)≠(r1
5,…,r5

5)≠(r1
9,…,r5

9)≠(r1
13,…,r5

13)}, 

{(r1
3,…,r6

3)≠(r1
7,…,r6

7) ≠(r1
11,…,r6

11)≠(r1
15,…,r6

15)}, 

{(r1
2,…,r5

2)≠(r1
6,…,r5

6)≠(r1
10,…,r5

10)≠(r1
14,…,r5

14)}  

and {(r1
4, …,r5

4)≠(r1
8, …,r5

8)≠(r1
12, …,r5

12)≠(r1
16, …, r5

16)}},   

then the T4 duplex DNA knot has no symmetry (S1’). 

If n = 2, Ltotal = 16m, Tw = 32m and R (r) = 168m, the resulting T8 duplex 

DNA knot is shown in Figure 3.26. In this figure, if it has S8 symmetry, this 

improper rotation must take the form: 

{{(r1
1,…, r5

1) = (r1
5,…, r5

5) = (r1
9,…, r5

9) = (r1
13,…, r5

13) = (r1
17,…, r5

17) 

= (r1
21,…, r5

21) = (r1
25,…, r5

25) = (r1
29,…, r5

29)},{(r1
3,…, r6

3) 

= (r1
7,…, r6

7) = (r1
11,…, r6

11) = (r1
15,…, r6

15) = (r1
19,…, r6

19) 

= (r1
23,…, r6

23) = (r1
27,…, r6

27) = (r1
31,…, r6

31)}, {(r1
2,…, r5

2) = (r1
6,…, r5

6) 
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= (r1
10,…, r5

10) = (r1
14,…, r5

14) = (r1
18,…, r5

18) 

= (r1
22,…, r5

22) = (r1
26,…, r5

26) = (r1
30,…, r5

30)} 

and {(r1
4,…, r5

4) = (r1
8,…, r5

8) = (r1
12,…, r5

12) = (r1
16,…, r5

16) 

= (r1
20,…, r5

20) = (r1
24,…, r5

24) = (r1
28,…, r5

28) = (r1
32,…, r5

32)}};  

and, after performing this rotation eight times, every generator on the Seifert 
construction must return to its original position. On the other hand, if  

{m1 ≠ m5 ≠ m9 ≠ m13 ≠ m17 ≠ m21 ≠ m25 ≠ m29},  

{m3 ≠ m7 ≠ m11 ≠ m15 ≠ m19 ≠ m23 ≠ m27 ≠ m31},  

{m2 ≠ m6 ≠ m10 ≠ m14 ≠ m18 ≠ m22 ≠ m26 ≠ m30}   and 

       {m4 ≠ m8 ≠ m12 ≠ m16 ≠ m20 ≠ m24 ≠ m28 ≠ m32},   

 

 

    

 

Figure 3.26: The Seifert construction for T8 duplex DNA knot that has S8 symmetry.  

Note that 
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and that m4j+1 is positioned in the boundaries of the bottom and top disks and m4j+3 is in 

the middle of the disk, and the others, m4j+2 and m4j’, are unmarked in the 

crossing-point areas of the knot 818. 
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then the generator m1 does not occur in a sequence that repeats itself 
exactly eight times. So the T8 duplex DNA knot has no symmetry (S1’).  

If n = k, Ltotal = 8km, Tw = 16km and R (r) = 84km, then the T4k duplex DNA 

knot (Figure 3.27) has S4k symmetry when the generators are regularly 

equivalent, e.g.,  

{m1 = m5 =…= m4j+1}, {m3 = m7 =…= m4j+3},  

{m2 = m6 =…= m4j+2} and {m4 = m8 =…= m4j’} 

(j = 0, 1, 2,…, 4k-1; j' = 1, 2,…, 4k).  

In this case, the middle disk (which is a mirror plane) must reverse up 
and down and repeats itself exactly 4k times with a rotation. On the other 
hand, if the sequence of bases on a given chain is likely to be irregular  

 

 
 

Figure 3.27: The Seifert construction for the T4k duplex DNA knot is displayed in 

two-space.  Note that 
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and that m4j+1 is positioned in the boundaries of the bottom and top disks and m4j+3 is in 

the middle of the disk, and the others, m4j+2 and m4j' , are unmarked in the 

crossing-point areas of the T4k-knot. 
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and does not satisfy a condition of regular repetition, e.g.,  

{(r1
1, r2

1, r3
1, r4

1, r5
1) ≠…≠ (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3, r6

3) ≠…≠ (r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3

, r6
4j+3)},  

{(r1
2, r2

2, r3
2, r4

2, r5
2) ≠…≠ (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)} and 

{(r1
4, r2

4, r3
4, r4

4, r5
4) ≠…≠ (r1

4j’, r2
4j’, r3

4j’, r4
4j’, r5

4j’)} 

(j = 0, 1, 2,…, 4k-1; j' = 1, 2,…, 4k),  

this object possesses no symmetry (S1’).  
By the induction property, we can conclude that T4n duplex DNA knots 

have S4n symmetry if and only if  

{(r1
1, r2

1, r3
1, r4

1, r5
1) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r13, r2
3, r3

3, r4
3, r5

3, r6
3) =…= (r1

4j+3, r2
4j+3, r3

4j+3, r4
4j+3, r5

4j+3
, r6

4j+3)},  

{(r1
2, r2

2, r3
2, r4

2, r5
2) =…=(r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)} and 

{(r1
4, r2

4, r3
4, r4

4, r5
4) =…= (r1

4j’, r2
4j’, r3

4j’, r4
4j’, r5

4j’)},  

and have no symmetry (S1’) if and only if  

{m1 ≠ m5 ≠…≠ m4j+1}, {m3 ≠ m7 ≠…≠ m4j+3},  

{m 2≠ m6 ≠…≠ m4j+2} and {m4 ≠ m8 ≠…≠ m4j’}  

(j = 0, 1, 2,…, 4n-1; j' = 1, 2,…, 4n; n = 1, 2,… ). 

We conclude from the proof above that the following corollary is true. 
If Ltotal = 2m × 4n = 8nm, Tw = 4m× 4n = 16nm and R (r) = 10(2m × 4n) = 

80nm, then the T4n duplex DNA knots have S4n symmetry when  

{{(r1
1, r2

1, r3
1, r4

1, r5
1) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1)},  

{(r1
3, r2

3, r3
3, r4

3, r5
3) =…= (r1

4j+3, r2
4j+3, r3

4j+3, r4
4j+3, r5

4j+3)},  

{(r1
2, r2

2, r3
2, r4

2, r5
2) =…= (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)}  

and {(r1
4, r2

4, r3
4, r4

4, r5
4) =…= (r1

4j’, r2
4j’, r3

4j’, r4
4j’, r5

4j’)}},  

and have no symmetry (S1’) when  
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{{m1 ≠ m5 ≠…≠ m4j+1}, {m3 ≠ m7 ≠…≠ m4j+3},  

{m2 ≠ m6 ≠…≠ m4j+2} and {m4 ≠ m8 ≠…≠ m4j'}}  

(j = 0, 1,…, 4n-1;  j' = 1, 2,…, 4n). 

The point groups S4n tell us that the T4n duplex DNA knots are achiral and 
their state will be achirally symmetric. In other words, right-handed and 
left-handed DNA knots are the same in the sense that we can move the 
right-handed DNA knots within three-space to create left-handed DNA knots. 
Thus, we need a mirror to get from one to the other. A mirror, in fact, makes a 
right-handed frame in three-space into a left-handed frame; of course, the 
mirror reverses up and down, and not left and right. On the other hand, the S1’ 
is shown to have the properties of a Euclidean rubber glove. 

 

3.7   Duplex DNA Catenanes 
Catenanes, from the Latin catena meaning chain, are molecules that 

contain two or more interlocked rings, which are inseparable without the 
breaking of covalent bond [31]. DNA duplex catenanes, called duplex DNA 
links, were first discovered in 1967 in Vinograd’s laboratory [157] as naturally 
occurring linked dimers in the mitochondria of malignant cells. The first study 
of equilibrium catenation of DNA in solution was carried out in 1976 [158] by 
Wang and Schwartz, who measured the fraction of catenanes formed between 
phage 186 and λ DNA molecules upon their cyclization (for a review, see  
Wasserman and Cozzarelli, 1986 [6]). In 1985 Spengler et al. [149] determined 
the structures of the duplex DNA links 21

2, 41
2, 61

2, 81
2, 101

2, 121
2, 141

2, 161
2, 

181
2, 201

2, etc. In 1992 Adams et al. [159] obtained the duplex DNA links 
having from two to more than 32 crossing points. 

At thermodynamic equilibrium, a distribution of isoforms of closed 
circular DNA (superhelical coils, knots, and catenanes) is formed from linear 
DNA. DNA topoisomerases [126,127] can catalyze the strand movement 
between two DNA segments, thereby affecting DNA topology. DNA links and 
knots, formed by the type I DNA topoisomerase approach, are observed at 
equilibrium. More recently, however, Cozzarelli’s group [151] have shown that 
with topoisomerase II the distribution of links and knots lies below the 
equilibrium values. These findings have implications in DNA replication and 
chromosome segregation [160,161]. 
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Duplex DNA links are a fascinating phenomenon of the life science, and 
characterize many of the medically and biologically most interesting DNAs 
[162-164]. A molecular Seifert construction [165] based on knot theory [77] has 
been presented to describe duplex DNA links. Applying the point symmetry 
concept to Seifert construction has permitted solution of the determination of 
geometrical chirality. The novel topology of the Seifert construction for duplex 
DNA links can be used to help understand life processes, such as replication 
and recombination [6], although much remains to be learned. Here we describe 
some chemical implications of knot theory, illustrating an important application 
of topology in the fields of supermolecular design and assembly. 

3.7.1   Definition of Intertwined Structures  

Clearly the duplex DNA links have very similar properties to normal 
duplex DNA. In order to completely characterize duplex DNA links with 2n 
half-twists, we denote the twisting number of superstructures by T2n (where n 
represents the linking number, n = 1, 2,...), as shown in Figure 3.28. The twin 
linking number of duplex DNA is defined as L = n×2m = 2nm or L' = n×2m' = 
2nm'; the twin twisting number is Tw = 2n×2m = 4nm (m = 1, 2,…,∞) or Tw' = 
2n×2m'= 4nm' (m' = 1, 2,…,∞); the number of twin base pairs is R (r) = 
10.5L = 21nm or R (r') = 10.5L' = 21nm' and R (r) = 10.0L = 20nm or R (r') 
= 10.0L' = 20nm', respectively. Thus Ltotal = L + L', Ttotal = Tw + Tw' and Rtotal = 
R (r) + R (r'), respectively, represent the total linking-number, total 
twisting-number and total base pairs in supermolecular links. The total 
twisting-number is equivalent to a certain number of generators on a minimal 
surface with the fewest genus.   

 

 
Figure 3.28: Cartoon representation of the T2n duplex DNA links. n and 2n represent, 

respectively, the linking and twisting numbers of duplex DNA links; m and 2m, 

respectively, represent the local linking and twisting numbers of duplex DNA and "r" is 

a collection of the base pairs held together by hydrogen bonds. 
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3.7.2   Topological Features of Intertwined Structures 

In general, the molecular knot and link can be viewed geometrically as the 
single edge, or boundary, of a two-dimensional surface [77]. In particular, the 
duplex DNA links can be viewed geometrically as the double edges, or double 
boundaries, of a two-dimensional surface. The Seifert construction with double 
edges is assembled by using two disks to fill in two loops in the supermolecular 
links (e.g., 21

2, 41
2, 61

2, 81
2, 101

2,...) [33] and 2n ribbons (n = 1, 2,...) with one 
half-twist to fill in the crossing-point areas in the supermolecular links, then 
connecting the disks with ribbons in three-space. The double edges represent 
two strands of the DNA double helix coated with a layer of water molecules, 
which are made by using 4nm and 4nm' (m = m' = 1, 2,...) ribbons with one 
half-twist to fill in the crossing-point areas in the double helix. In molecular 
Seifert constructions, the total twist is arranged in the optimum symmetry 
position.   

For variety, let us use mathematical induction to prove that the Seifert 
constructions for the T2n-DNA links have either Cn symmetry or C1 symmetry 
for all positive integers n when the 21- or 20-base-pairs occur in a sequence 
that repeats itself exactly n times. 

For example, if n = 1, L= L' = 2m, Tw = Tw' = 4m and  R(r) = R (r’) = 
2×10.5m = 21m (m = m' = 1, 2,..., ∞), then the T2 duplex DNA link (Figure 
3.29) has C1 symmetry whether the generators are regularly equivalent or not.  

If n= 2, L = L' = 4m, Tw = Tw' = 8m and R (r) = R (r') = 42m (m = m' = 1, 
2,..., ∞), then the T4 DNA link (Figure 3.30) has C2 symmetry when   

{{ (r1
1,…,r1

5) = (r5
1,…, r5

5), (r3
1,…, r3

6) = (r7
1,…,r7

6),  

(r2
1,…,r2

5) = (r6
1,…, r6

5) and (r4
1,…,r4

5) = (r8
1,…,r8

5) } and 

   { (r'11, …, r'15) = (r'51,…, r'55), (r'31, …, r'36) = (r'71,…, r'76),  

(r'21, …, r'25) = (r'61, …, r'65) and  (r'41,…, r'45) = (r'81, …, r'85) }},   
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Figure3. 29: The Seifert construction for the T2-DNA link that has C1 symmetry. Here 

"r" represents T=A or G≡C (“=" or "≡" represents the number of hydrogen bonds). 

Note that {m1, m'1 } and {m3, m'3 } are, respectively, arranged in the boundaries of the 

bottom and top disks, and that { m2, m4 } and {m'2 , m'4 } are unmarked in the 

crossing-point areas of the link 21
2 ( mi = m'i =1, 2,. ..., ∞ ). 

and has C1 symmetry when  

{{m1 ≠ m5, m3 ≠ m7, m2 ≠ m6 and m4 ≠ m8 }  

and {m'1 ≠ m'5, m'3 ≠ m'7, m'2 ≠ m'6 and m'4 ≠ m'8 }}. 

Similarly, if n = k, L = L' = 2km, Tw = Tw' = 4km and R (r) = R (r') = 21km  
(m = m' = 1, 2,..., ∞), then the T2k-DNA link (Figure 3.31) has Ck symmetry. In 
this case, proper rotation must take  

{{ (r1
1, r1

2, r1
3, r1

4, r1
5) = …= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1),  

(r3
1, r3

2, r3
3, r3

4, r3
5 , r3

6) =…= (r1
4j+3, r2

4j+3, r3
4j+3, r4

4j+3, r5
4j+3

 , r6
4j+3),  

( r2
1, r2

2, r2
3, r2

4, r2
5) =…= (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)  

and (r4
1, r4

2, r4
3, r4

4, r4
5) =…= (r1

4j’ , r2
4j’ , r3

4j’ , r4
4j’ , r5

4j’)}  

and {(r'11, r'12, r'13, r'14, r'15) =…= (r'4j+1
1, r'4j+1

2, r'4j+1
3, r'4j+1

4, r'4j+1
5),  

(r'31, r'32, r'33, r'34, r'35, r'36 ) =…= (r'4j+3
1, r'4j+3

2, r'4j+3
3, r'4j+3

4, r'4j+3
5, r'4j+3

6), 

(r'21, r'22, r'23, r'24, r'25) =…= (r'4j+2
1, r'4j+2

2, r'4j+2
3, r'4j+2

4, r'4j+2
5)  

and (r'41, r'42, r'43, r'44, r'45) =…= (r'4j'1, r'4j'2, r'4j'3, r'4j'4, r'4j'5)} }.  
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Figure 3.30: The Seifert construction for the T4-DNA link that has C2 symmetry. Note 

that  

and that {m4j+2, m'4j+2 } and {m4j' ,  m'4j'} are unmarked in the crossing-point 

areas of the link 41
2. 

However, if  

{{(m1 ≠ m5 ≠…≠ m4j+1), (m3 ≠ m7 ≠…≠ m4j+3),  

(m2 ≠ m6 ≠…≠ m4j+2) and (m4 ≠ m8 ≠…≠ m4j')}  

and {(m'1 ≠ m'5 ≠…= m'4j+1), (m'3 = m'7 =…= m'4j+3),  

{m'2 = m'6 =…= m'4j+2) and (m'4 = m'8 =…= m'4j')} },  

then the T2k-DNA link has C1 symmetry (j = 0, 1, 2,…, k-1; j' = 1, 2,…, k ).  

It is quite surprising to realize, by the induction process, that the T2n 

duplex DNA links have Cn symmetry when  

{{ (m1 =…= m4j+1), (m3 =…= m4j+3), (m2 =…= m4j+2)  

and (m4 =…= m4j') } and {(m'1 =…= m'4j+1),  

(m'3 =…= m'4j+3), (m'2 =…= m'4j+2) and (m'4 =…= m'4j')} },  
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'4
1,0

24
1,0

34
1,0

14

8

1
∑∑∑∑∑
==

+
=

+
=

+
=

+++===
j

j
j

j
j

j
j

j
i

iw mmmmmmT

,''''''8
1,0'

'4
1,0

24
1,0

34
1,0

14

8

1
' ∑∑∑∑∑

==
+

=
+

=
+

=

+++===
j

j
j

j
j

j
j

j
i

iw mmmmmmT

中国科技论文在线_______________________________________________________________________www.paper.edu.cn



 223

 
Figure 3.31: The Seifert construction for the T2k-DNA link that has Ck symmetry.  Note 

that 

and that {m4j+1, m'4j+1}and {m4j+3, m'4j+3} are, respectively, positioned in the boundaries 

of the bottom and top disks; whereas the others, {m4j+2, m'4j+2 } and {m4j' , m'4j'}, are 

unmarked in the crossing-point areas of the T2k-link. 

and have only C1 symmetry when  

{{(m1 ≠…≠ m4j+1), (m3 ≠…= m4j+3),  

(m2 ≠…≠ m4j+2), (m4 ≠…≠ m4j'), … }}  

for all positive integers n (j = 0, 1,…, n-1; j' = 1, 2,…, n; n = 1, 2,…). 
In the same way, we can prove that the T2n duplex DNA links (L = L' = 

2nm, Tw = Tw'=4nm and R (r) = R (r') = 20nm, m = m' = 1, 2,..., ∞) have Cn 
symmetry when  

{{ (r1
1, r1

2, r1
3, r1

4, r1
5) =…= (r1

4j+1, r2
4j+1, r3

4j+1, r4
4j+1, r5

4j+1),  

(r3
1, r3

2, r3
3, r3

4, r3
5) =…= (r1

4j+3, r2
4j+3, r3

4j+3, r4
4j+3, r5

4j+3),  

(r2
1, r2

2, r2
3, r2

4, r2
5) =…= (r1

4j+2, r2
4j+2, r3

4j+2, r4
4j+2, r5

4j+2)  

and (r4
1, r4

2, r4
3, r4

4, r4
5) =…= (r1

4j’ , r2
4j’ , r3

4j’ , r4
4j’ , r5

4j’)}  

and {(r'11, r'12, r'13, r'14, r'15) =…= (r'4j+1
1, r'4j+1

2, r'4j+1
3, r'4j+1

4, r'4j+1
5),  

(r'31, r'32, r'33, r'34, r'35) =…= (r'4j+3
1, r'4j+3

2, r'4j+3
3, r'4j+3

4, r'4j+3
5),  
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(r'21, r'22, r'23, r'24, r'25) =…= (r'4j+2
1, r'4j+2

2, r'4j+2
3, r'4j+2

4, r'4j+2
5)  

and (r'41, r'42, r'43, r'44, r'45) =…= (r'4j’ 1, r'4j’ 2, r'4j’ 3, r'4j’ 4, r'4j’ 5)} },  

and have C1 symmetry when  

{{(m1 ≠ m5 ≠…≠ m4j+1), (m3 ≠ m7 ≠…≠ m4j+3), 

(m2 ≠ m6 ≠…≠ m4j+2) and (m4 ≠ m8 ≠…≠ m4j')}  

and {(m'1 ≠ m'5 ≠…= m'4j+1), (m'3 ≠ m'7 ≠…≠ m'4j+3),  

(m'2 ≠ m'6 ≠…≠ m'4j+2) and (m'4 ≠ m'8 ≠…≠ m'4j')} }  

(j = 0, 1, 2,…, n-1; j' = 1, 2,…, n).  

We have shown that the duplex DNA links possess the point group Cn or 
C1 when the double helix makes a full turn every 10.5 or 10.0 base pairs. This 
result demonstrates that the duplex DNA links are chiral and the right-handed 
and left-handed DNA links are distinct.  

3.8   Summary 

As mentioned above, circular duplex DNA, single-stranded DNA knots, 
duplex DNA knots and duplex DNA links have some features which are regular, 
and some which are irregular. Here are some of the phenomena we are now in a 
position to explore. 

Seifert construction enlarged   The molecular Seifert construction involves 
the language of geometry and is based on strict deterministic rules. In general, 
molecular Seifert construction is the result of a construction procedure or 
production rule that is often recursive (repeated over and over). The generators 
are a class of structures that look similar but are not exactly the same and reveal 
a growth process of order and synchronization, which are enlarged depending 
on either 2j + 1 and 2j’ or 4j + 1, 4j + 3, 4j + 2 and 4j’ (j = 0, 1, 2,…; j’ = 1, 
2,…). As the pattern is enlarged it reveals repetitive levels of detail, so that 
similar structure exists on all scales.  

Geometrical chirality and achirality   Chirality and achirality of the DNA 
links and knots are beginning to emerge that differentiate one from the other. 
The structures with C1, Cn or the C2n+1symmetries are geometrically chiral 
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while the structures with S4n symmetries are geometrically achiral. The objects 
with geometrical chirality have two forms which are the left-handed and right 
handed; whereas those with geometrical achirality are not, since the left-handed 
and right-handed forms can be transformed in three-space from one to the other 
by symmetry operations. An object with no symmetry S1’ is shown to have the 
properties of a Euclidean rubber glove because it can reversed up and down and 
the palm and thumb are differentiated from the back of the hand. The no 
symmetry point group C1 represents the most chirality and the no symmetry S1’ 
represents the least chirality.  

Intramolecular symmetry breaking   Most artificial DNAs may have the 
point groups Cn, C2n+1 or S4n, whereas the natural DNAs have no symmetry and 
are C1 or S1’. The Cn (n≥2), C2n+1 and S4n symmetries are very regular whereas 
the C1 and S1’ are completely irregular. The Cn, C2n+1 and S4n symmetries 
possess characteristic sizes and are a geometrical invariant, whereas the C1 and 
S1’ possesses no characteristic scales and are a scale invariant but infinitely 
repeated structures, such as 2n, 2n+1 or 4n (n=1,2,…). The artificial DNAs are 
either regular or irregular, whereas the natural DNAs must be irregular. The 
fusion of regular and irregular features is achieved admittedly only at the 
expense of the symmetry conformation. Thus, the transitions, Cn, C2n+1→C1 or 
S4n→S1’, are referred to as intramolecular symmetry breaking. The 
intramolecular symmetry breaking is a mechanism by which a system of itself 
goes from a highly symmetric conformation to a no-symmetric one. The most 
chirality or the least chirality is the result of intramolecular symmetry breaking. 
It can take place in part because of the ubiquity of low-frequency 1/fβ noise and 
long-range fractal correlations as well as prominent short-range periodicities 
[166] in DNA base sequences [167]. The intramolecular symmetry breaking 
may be a basis of characterizing the complexity and variety of the medically 
and biologically most interesting DNAs. 

Intermolecular symmetry breaking   The origin of chiral asymmetry is a key 
question in life studies [168]. Artificial DNA is easily formed in 
thermodynamic equilibrium. At thermodynamic equilibrium, the numbers of 
left- and right-handed forms will be equal, and the state will be chirally 
symmetric. This explains why the right- and left-handed forms are found in the 
laboratory in essentially equal numbers [96]. A life system is open to the inflow 
of energy or matter; however, it is no longer in thermodynamic equilibrium [62]. 
Intermolecular symmetry breaking then can become operative and can throw 
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the natural DNA into a chirally asymmetric state, one that has unequal amounts 
of the left- and right-handed forms. A life system will therefore be open and far 
from equilibrium, ensuring that intermolecular symmetry breaking can take 
place. Intermolecular symmetry breaking is a mechanism by which a system 
spontaneously goes from a symmetric state to an asymmetric one. 
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