Preparation of CaAlSiN₃:Eu²⁺ Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties

Xianqing Piao,[†] Ken-ichi Machida,^{*,†} Takashi Horikawa,[†] Hiromasa Hanzawa,[‡] Yasuo Shimomura,[§] and Naoto Kijima[§]

Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, and Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan

Received March 6, 2007. Revised Manuscript Received May 20, 2007

Divalent europium-doped nitride phosphors, $Ca_{1-x}Eu_xAlSiN_3$ (x = 0-0.2), were successfully prepared by the self-propagating high-temperature synthesis (SHS) by using $Ca_{1-x}Eu_xAlSi$ alloy powder as a precursor. The Rietveld refinement analysis was carried out on the CaAlSiN₃ host lattice to elucidate the luminescence properties of dopant Eu^{2+} on the tetrahedrally coordinated site. For the Eu^{2+} doped samples, strong absorption peaking at about 460 nm was observed on the excitation spectra, which matched perfectly with the current blue light of InGaN/GaN light-emitting diodes (LEDs). The optimized sample, $Ca_{0.98-}Eu_{0.02}AlSiN_3$, gave the red emission peaking at 649 nm of which the intensity was competitive with the sample prepared from the metal nitride raw materials (Ca_3N_2 , AlN, Si_3N_4 , and EuN). The CIE chromaticity index (0.647, 0.347) with high color saturation indicated that it was a promising candidate as a redemitting phosphor for the InGaN/GaN-based down-conversion white LEDs for general illumination or displays.

1. Introduction

The white light-emitting diodes (LEDs), featuring the advantages of high light efficiency, low energy consumption, and long service lifetime, have drawn much attention because of their wide applications. Currently, the most common approach to produce white light is to combine a blue LED chip with a yellow phosphor, and some detailed studies on the combination of the InGaN blue-emitting LED and Ce³⁺doped yttrium aluminum garnet (YAG) yellow phosphor are presented.^{1,2} However, the "white" output light of such an LED is limited with high correlated color temperature (CCT) ranging from 4500 to 11 000 K; that is, the cold white light is usually obtained. To obtain the warm white light output, a complementary red light is necessary to compensate the red color deficiency or to produce white light in the bluegreen-red (BGR) mode. For both routes, the red phosphors that can be efficiently excited by the GaN or InGaN LED chip are in great demand.

As the 4f-5d transition of Eu²⁺ ion is sensitive to the crystal field and covalency, the Eu²⁺ doped phosphors have a strong absorption in the UV to the visible spectral region and exhibit broad emission bands covering the color from blue to red. Recently, the Eu²⁺-activated nitride phosphors have drawn much interest because of their outstanding

[§] Mitsubishi Chemical Group Science and Technology Research Center, Inc. (1) Nakamura, S.; Fasol, G. *The blue Laser Diode: GaN Based Light*

(2) Nakamura, S.; Mukai, T.; Senoh, M. Appl. Phys. Lett. 1994, 64, 1687.

thermal and chemical stability and interesting photoluminescence properties. These phosphors, such as Eu²⁺-doped α - and β -SiAlON,^{3,4} M^{II}₂Si₅N₈:Eu²⁺ (M^{II} = Ca, Sr, Ba),⁵⁻⁸ and LaSi₃N₅:Eu^{2+,9} efficiently emit visible light under the excitation of near-UV or blue light, allowing them to be used as the down-conversion phosphors in the white LEDs. The nitrogen atoms in such nitride hosts are generally connected with two $(N^{[2]})$, three $(N^{[3]})$, or even four $(N^{[4]})$ silicon atoms, such as in BaYbSi₄N₇¹⁰ and BaSi₇N₁₀.¹¹ The degree of condensation κ (molar ratio of Si/N) has been observed within the range of 1/2 to 3/4, which is not accessible for oxysilicates (the maximum is 1/2 in SiO₂).¹² These highly condensed SiN₄-based networks guarantee the extraordinary chemical and thermal stability. Furthermore, the activators, such as Eu²⁺ or Ce³⁺, show interesting luminescent properties in such nitride host as surrounded by the strong covalent

- (4) Hirosaki, N.; Xie, R.-J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M. Appl. Phys. Lett. 2005, 86, 211905.
- (5) Höppe, H. A.; Lutz, H.; Morys, P.; Schnick, W.; Seilmeier, A. J. Phys. Chem. Solid 2000, 61, 2001.
- (6) Li, Y. Q.; van Steen, J. E. J.; van Krevel, J. W. H.; Botty, G.; Delsing, A. C. A.; DiSalvo, F. J.; de With, G.; Hintzen, H. T. J. Alloys Compd. 2006, 417, 273.
- (7) Piao, X. Q.; Horikawa, T.; Hanzawa, H.; Machida, K. Appl. Phys. Lett. 2006, 88, 161908.
- (8) Piao, X. Q.; Horikawa, T.; Hanzawa, H.; Machida, K. Chem. Lett. 2006, 35, 334.
- (9) Uheda, K.; Takizawa, H.; Endo, T.; Yamane, H.; Shimada, M.; Wang, C.-M.; Mitomo, M. J. Lumin. 2000, 87–89, 967.
- (10) Li, Y. Q.; de With, G.; Hintzen, H. T. J. Alloys Compd. 2004, 385, 1.
- (11) Huppertz, H.; Schnick, W. Chem.-Eur. J. 1997, 3, 249.
- (12) Hoeppe, H. A.; Stadler, F.; Oeckler, O.; Schnick, W. Angew. Chem., Int. Ed. 2004, 43, 5540.

^{*} Corresponding author. Tel.: +81-6-6879-4209. Fax: +81-6-6879-4209. E-mail: machida@casi.osaka-u.ac.jp.

[†] Center for Advanced Science and Innovation, Osaka University.

[‡] Graduate School of Engineering Science, Osaka University.

Emitters and Lasers; Springer: Berlin, 1997.

⁽³⁾ Xie, R. J.; Hirosaki, N.; Sakuma, K.; Yamamoto, Y.; Mitomo, M. *Appl. Phys. Lett.* **2004**, *84*, 5404. Suehiro, T.; Hirosaki; N.; Xie, R.-J.; Mitomo, M. Chem. Mater. **2005**, *17*, 308.

 N^{3-} ions. Very recently, Uheda and co-workers reported CaAlSiN₃:Eu²⁺ as a novel red phosphor for white LED use.¹³ The application, however, was limited to some extent because the air-sensitive Ca₃N₂ must be used as a raw material in addition to the inert AlN and Si₃N₄. Thus, the critical preparation condition of high temperature and pressure is necessary to complete the conventional solid-state reaction. Consequently, from the viewpoint of industrial applications, new synthesis routes for the high-performance CaAlSiN₃: Eu²⁺ phosphor are still urgently required.

In the present work, CaAlSiN₃:Eu²⁺ phosphors were synthesized by using self-propagating high-temperature synthesis (SHS) method, which is widely used in the preparation of alloy compounds, borides, or nitrides.¹⁴ The structure, thermal and chemical stability, and luminescent properties of obtained CaAlSiN₃:Eu²⁺ phosphors were investigated as an efficient red phosphor for the white LEDs application.

2. Experimental and Measurement Sections

The Ca_{1-x}Eu_xAlSi alloy powder prepared from silicon shot (Wako, 99.999%), calcium (Nilaco, 99.9%), aluminum (Nilaco, 99.99%), and europium (Wako, 99.99%) metal shots was used as precursors for synthesizing the CaAlSiN₃:Eu²⁺ phosphors. These raw materials were arc-melted several times in an Ar atmosphere to form the homogeneous alloy ingot that was easily grounded to fine powder. The weight loss during the arc melting was less than 1 wt %. The fine alloy powder was transferred to a Mo boat and then loaded into a radio frequency (RF) furnace (ZrB2 heater). The heating chamber was pumped down, and back filled with high purity N₂ (6 N), and heated under continuous N₂ flow with a rate of 20 mL/min. The temperature was slowly (10 °C/min) increased up to 1050 °C at which the SHS occurred, and then the product after the SHS process was calcined at 1450-1550 °C for 6 h for further nitridation. At last, the power was switched off and the samples were cooled to room temperature with the furnace.

The samples were identified by X-ray powder diffraction (RINT2200, Rigaku) with Cu K α radiation operating at 40 kV and 30 mA. The data for Rietveld analysis were collected with a step of 0.01° (2 θ) and a scanning speed of 0.5°/min in the range of 10–90°. The powder was mounted on a flat plate holder by the side filling method to avoid the preferred orientation. The oxygen content was measured by an O/N analyzer (EMGA-550, Horiba). Diffuse reflection spectra were obtained by a BaSO₄ powder calibrated UV–vis spectrophotometer (UV-2200, Shimadzu). The photoluminescence spectra were measured using fluorescent spectrophotometers (Hitachi F-4500) at room-temperature equipped with a Xe lamp as an excitation source and USB Ocean 2000 (Ocean Optics) fixed on a liquid helium cooled cryostat in the range of 5–280 K).

3. Results and Discussion

Figure 1 shows the X-ray diffraction (XRD) pattern of the CaAlSi alloy precursor powder. The CaAlSi intermetallic compound, which is isostructural with MgB₂ (AlB₂ type C_{32} crystal structure), is generally known as a superconductor.

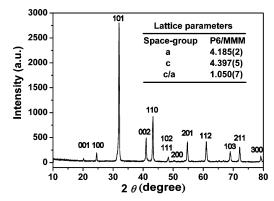


Figure 1. XRD pattern of CaAlSi alloy powder precursor; the inset table shows the calculated lattice parameters.

The lattice parameters are calculated using the TREOR 90 version of the indexing program TREOR,¹⁵ and the obtained parameters (listed in the inset of Figure 1) are in good agreement with the previous work.¹⁶ The successful ignition at about 1050 °C leads to the propagation of a flame to the whole sample area, and the local temperature is observed around 1900 °C because the SHS is an exothermal process and then reverts to the furnace temperature. The reaction is simply expressed as follows:

$$2\operatorname{Ca}_{1-x}\operatorname{Eu}_{x}\operatorname{AlSi} + 3\operatorname{N}_{2} \rightarrow 2\operatorname{Ca}_{1-x}\operatorname{Eu}_{x}\operatorname{AlSiN}_{3} \quad (x = 0 - 0.2)$$
(1)

Of course, the contribution of the solid-state reaction of the corresponding nitrides (Ca₃N₂, AlN, Si₃N₄) that nitrified from the precursor to form the $Ca_{1-x}Eu_xAlSiN_3$ compound cannot be ruled out. After the SHS process occurs, further conversion to nitride continues apparently at higher temperature (up to 1500 °C), and the CaAlSiN₃:Eu²⁺ nitride products with carmine color are finally obtained. As the pure metals are used as raw materials to synthesize Ca_{1-x}Eu_xAlSiN₃ phosphors, the oxygen content of the resultant sample is suppressed as low as possible. For example, the oxygen content of a typical sample, Ca_{0.98}Eu_{0.02}AlSiN₃, is successfully lowered to less than 0.6 wt %, and the measured nitrogen content (29.1 wt %) is close to the stoichiometric value (30.1 wt %), indicating that the alloy precursor is completely nitrified. Figure 2 shows electron microscope images of a typical alloy powder precursor (Ca_{0.98}Eu_{0.02}AlSi) and the corresponding phosphor (Ca_{0.98}Eu_{0.02}AlSiN₃). The mean size of the precursor is about 1 μ m, and the phosphor obtained by the SHS route contains irregular particles with the size of about $6-9 \,\mu\text{m}$, which is larger than that reported in ref 13. In addition, as the exothermal SHS process stimulates the particle coarsening and agglomerating, some larger aggregates (as marked in Figure 2b) are observed even after regrinding in a mortar. Though the uniform morphology is not obtained by this route, it is acceptable for the white LED application as the particle size requirement is not so strict as that in the plasma display panel (PDP) field.

To investigate the crystal structure of the host matrix, the Rietveld refinement analysis is carried out on the undoped

⁽¹³⁾ Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. *Electrochem. Solid-State Lett.* **2006**, *9*, H22. Uheda, K.; Hirosaki, N.; Yamamoto, H. *Phys. Status Solidi A* **2006**, *203*, 2712.

⁽¹⁴⁾ Merzhanov, A. G.; Rogachev, A. S. Pure Appl. Chem. 1992, 64, 941.

⁽¹⁵⁾ Werner, P. E.; Eriksson, L.; Westdahl, M. J. Appl. Crystallogr. 1985, 18, 367.

 ⁽¹⁶⁾ Imai, M.; Nishida, K.; Kimura, T.; Abe, H. Appl. Phys. Lett. 2002, 80, 1019. Sparta, K. M.; Mueller, R.; Merz, M.; Roth, G.; Adelmann, P.; Wolf, T. Acta Crystallogr., Sect. B 2006, 62, 710.

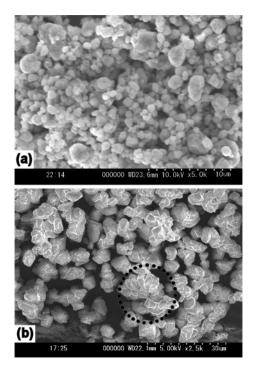


Figure 2. SEM images of Ca0.98Eu0.02AlSi and the corresponding Ca0.98-Eu_{0.02}AlSiN₃ phosphor.

CaAlSiN₃. The XRD pattern of CaAlSiN₃ is indexed with the TREOR 90 program package, and the calculation reveals that this compound is attributed to the orthorhombic system. The space group determination is performed with the CHECKCELL¹⁷ program. With regard to the symmetry and space group of the initial compound, two space groups, $Cmc2_1$ and Cmcm, are given as the best solutions. On the basis of the presented group-subgroup connection analysis of such AB₂X₃ compound according to Bärnighausen's procedure,¹⁸ the space group of $Cmc2_1$ is chosen for further calculations. For the Rietveld refinement of CaAlSiN₃, the atomic coordinates of NaSi₂N₃¹⁹ are employed as the starting model, and the structure is refined with the software package of FULLPROF SUITE.²⁰ Figure 3 shows the comparison of the calculated and observed CaAlSiN₃ patterns as well as the difference curve between them. The resultant crystallographic data and atomic coordinates are summarized in Table 1, and these data agree well with the work of Uheda's group.¹³ The space group of $Cmc2_1$ is the maximum nonisomorphic subgroup of the ZnO type wurtzite group $P6_3mc$. According to refinement results of the unit cell parameters, the CaAlSiN₃ compound presents a normal tetrahedral structure related to the wurtzite type

$$a_0 \sim 3a_{\rm w}, \quad b_0 \sim \sqrt{3}a_{\rm w}, \quad c_0 \sim c_{\rm w}$$
 (2)

The degree of matching can be evaluated by the ratio of ϵ $= 2c_0/(a_0/3 + b_0/\sqrt{3})$, and the calculated value ($\epsilon = 1.553$) is close to the ideal quotient (ϵ : $2\sqrt{2}/\sqrt{3} = 1.633$).²¹

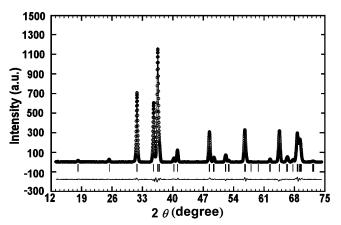


Figure 3. Observed (circle) and calculated (line) X-ray powder diffraction patterns of CaAlSiN3 as well as the difference profile (bottom line) between them. Bragg reflection peak positions are shown as vertical bars.

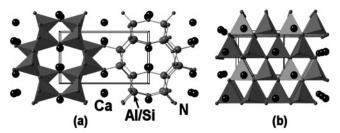


Figure 4. Crystallographic structure of CaAlSiN₃ along the (a) [001] (on the left side a polyhedral view of the structure and on the right a ball-stick representation) and (b) [100] directions.

Table 1. Refined Structural Parameters, Atomic Coordinates, Isotropic Displacement Parameters, and Selected Interatomic Distances of CaAlSiN₃ Obtained from the Rietveld Refinement Using Powder XRD Data

atom (site)	x y			z	occupancy	$U_{\rm iso} [{\rm \AA}^2]$				
Ca (4a)	0	0.31	56 0.9752		1	0.0167				
Al/Si (8b)	0.1714	0.84	0.0489		1	0.0035				
N1 (8b)	0.2123	0.87	31 0.4	1067	1	0.0003				
N2 (4a)	0	0.23	05 0.5	5000	1	0.0003				
CaA		selected distances and angles								
formula weight	137.16		Ca-N1 ^I	2.3995	N1 ^I -Ca-N1 ^{II}	118.896				
crystal system	orthorhombic		Ca-N1 ^{II}	2.3995	N1I-Ca-N2I	98.984				
space group	$Cmc2_1$ (N	o. 36)	Ca-N2 ^I	2.4433	N1 ^I -Ca-N2 ^{II}	115.529				
cell parameters	<i>a</i> = 9.731	(1) Å	Ca-N2 ^{II}	2.5637	N1 ^{II} -Ca-N2 ^I	98.984				
	b = 5.640	(8) Å			N1 ^{II} -Ca-N2 ^{II}	115.529				
	c = 5.041				N2I-Ca-N2II	104.133				
volume	268.72 Å ³		$M^a - N1^I$	1.7357	N1 ^I -M-N1 ^{II}	107.628				
Ζ	4		M-N1 ^{II}	1.8009	N1 ^I -M-N1 ^{III}	104.888				
density (calcd)	3.7919 g/cm3		M-N1 ^{III}	1.8096	N1 ^I -M-N2	111.570				
R factors	$R_{\rm p} = 5.49\%$		M-N2	1.8556	N1 ^{II} -M-N1 ^{II}	п 108.249				
	$R_{\rm wp} = 9.8$	6%			N1 ^{II} -M-N2	112.626				
					N1 ^{III} -M-N2	111.493				
a M = Al/Si.										

As shown in Figure 4, the structure of CaAlSiN₃ is built up of an MN_4 tetrahedra (M = Al/Si) linked threedimentional structure: one-third of the nitrogen atoms (N2) are linked with two M neighbors, and the other two-thirds (N1) are connected with three M neighbors. The Al and Si atoms are randomly distributed on the same tetrahedral sites and connected with N atoms to form the vertex-linked M6N18 rings. Very similar ring structures have also been observed in other nitridosilicates, such as $M^{II}_{2}Si_{5}N_{8}$ ($M^{II} = Ca, Sr,$

⁽¹⁷⁾ Laugier, J.; Bochu, B. CHECKCELL: A Software Performing Automatic Cell/Space Group Determination; Laboratory of Materials and Phyisical Engineering, School of Physics, University of Grenoble, France, 2000 (http://www.ccp14.ac.uk/tutorial/lmgp/). (18) Baur, W. H.; McLarnan, T. J. J. Solid State Chem. **1982**, 42, 300.

⁽¹⁹⁾ Jacobs, H.; Mengis, H. Eur. J. Solid State Inorg. Chem. 1993, 30, 45.

⁽²⁰⁾ Roisnel, T.; Rodríguez-Carvajal, J. Mater. Sci. Forum 2001, 378-381, 118.

⁽²¹⁾ Guyader, J.; L'Haridon, P.; Laurent, Y.; Jacquet, R.; Roult, G. J. Solid State Chem. 1984, 54, 251.

Table 2. Lattice Constants of Structurally Related Compounds with CaAlSiN₃

	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)
LiSi ₂ N ₃	9.186(3)	5.302(2)	4.776(2)
NaSi ₂ N ₃	9.468(1)	5.502(1)	4.878(5)
NaGe ₂ N ₃	9.8662(15)	5.7830(9)	5.1221(5)
Si ₂ N ₂ O	8.866(2)	5.486(1)	4.845(1)
Si ₂ N ₂ NH	9.1930(7)	5.4069(4)	4.8190(4)
Si ₂ N ₂ NCN ^a	13.58	5.44	4.81

^a Belongs to the space group of Aba2, while the other five compounds belong to $Cmc2_1$.

Ba).²² In CaAlSiN₃, however, such condensed M_6N_{18} rings are highly oriented with all of the MN₄ tetrahedrons pointing along the [001] direction. By observing along the [100] direction horizontally, two layers with the sequence of CDCD... are found. The layers C and D are topologically identical, and one layer can be regarded as the 180° rotation in XY plane of the other. According to the analysis of interatomic distance, the mean distance of M-N is 1.800-(5) Å, and the M–N1 is shorter than that of M-N2. This indicates that threefold bridged N1 contributed dominantly to the rigidness of the structure. Furthermore, in other compounds sharing the isotropic or similar space groups, the N2 sites can be replaced by other anion or anion group such as O²⁻, NH²⁻, and -N=C=N-²⁻.^{19,21,23-26} As the comparison of unit cell parameters of such compounds (Table 2), the expansion or shrinkage of unit parameters is found to be significantly obvious for the parameter *a* as the Si–N2–Si extends at [100] direction.

Calcium atoms are arranged in the channels formed by Si_6N_{18} rings along [001] orientation. The cation radii of Ca^{2+} , Al³⁺, and Si⁴⁺ are considered, combined with the interatomic distances of Ca-N and M-N listed in Table 1, the larger Eu^{2+} ions are assumed to be incorporated into the Ca^{2+} site when CaAlSiN₃ is used as a phosphor host. The substitution of the Ca²⁺ ion by the larger Eu²⁺ ion results in the lattice expansion, which is confirmed by the shift of XRD peaks of $Ca_{1-x}Eu_xAlSiN_3$ toward the low 2θ angle side with increasing Eu²⁺ content. The solid solution of Eu²⁺ in $Ca_{1-x}Eu_xAlSiN_3$ is limited to about 20 atom %, and the higher doping concentration of Eu²⁺ ions results in the formation of impurity phases, such as Eu₂Si₅N₈ (JCPDS 87-0423). Furthermore, as the cation radii of Eu^{2+} and Sr^{2+} are very close to each other, the latter ion is expected to have a similar solid solution capacity in the CaAlSiN₃ host lattice to form (Ca,Sr)AlSiN₃ solid solution. Thus, the fine color tuning is expected by changing the crystal field strength. The study from this aspect is still in progress, and the result will be the subject of another publication.

Figure 5 shows the optical reflection spectra of undoped and Eu²⁺-doped CaAlSiN₃. For the undoped sample, which shows pure white body color, a strong absorption shows up

- (22) Schlieper, T.; Schnick, W. Z. Anorg. Allg. Chem. 1995, 621, 1037. Schlieper, T.; Milius, W.; Schnick, W. Z. Anorg. Allg. Chem. 1995, 621, 1380.
- (23) Jean, D.; Yves, L.; Jean-P, C.; Jean, L. Bull. Soc. Fr. Mineral. Cristallogr. 1973, 96, 21. (24) Srinivasa, S. R.; Cartz, L.; Jorgensen, J. D.; Worlton, T. G.; Beyerlein,

Chem. Mater., Vol. 19, No. 18, 2007 4595

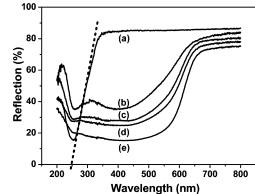
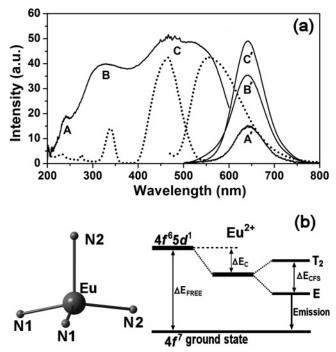



Figure 5. Diffuse reflection spectra of undoped CaAlSiN₃ host (a) and $Ca_{1-x}Eu_xAlSiN_3$ samples with x = 0.02 (b), 0.05 (c), 0.1 (d), and 0.2 (e).

Figure 6. Typical photoluminescence excitation ($\lambda_{mon} = 649$ nm) and emission ($\lambda_{ex} = 460$ nm) spectra of Ca_{0.98}Eu_{0.02}AlSiN₃ (a) and the schematic picture of the influence of the environment of a Eu²⁺ on the positions of electronic states (b).

in the range of 200-300 nm caused by the electronic transition of the host. The optical band gap E_g of CaAlSiN₃ determined by extrapolating the linear portion of the reflection curve onto energy (wavelength) is about 5.0-5.2 eV. For the Eu²⁺-doped samples, strong absorption bands are presented in the range of the UV to visible spectral region, which can be assigned to the $4f^7 \rightarrow 4f^65d$ transition of the Eu^{2+} ion. With increasing Eu^{2+} ion concentration, the absorption becomes stronger and the absorption edges shift to the longer wavelength side so that the body color of phosphors reddens gradually.

The room-temperature excitation and emission spectra of Ca_{0.98}Eu_{0.02}AlSiN₃ are depicted in Figure 6a. The excitation spectrum is consistent with the corresponding reflection spectrum and shows a broadband covering the region from the near-UV to visible part. The first band located at about 240 nm is caused by the electronic transition between the valence and the conduction band of the CaAlSiN₃ host (in accordance with the optical band gap given in Figure 5).

- R. A.; Billy, M. J. Appl. Crystallogr. 1977, 10, 167. (25) Peters, D.; Jacobs, H. J. Less-Common Met. 1989, 146, 241. (26) Riedel, R.; Greiner, A.; Miehe, G.; Dressler, W.; Fuess, H.; Bill, J.;
- Aldinger, F. Angew. Chem., Int. Ed. Engl. 1997, 36, 603.

Another two peaking at 320 and 470 nm are due to the excitation of the Eu²⁺ ions (4f⁷ \rightarrow 4f⁶5d). The 5d levels of Eu^{2+} ions that are not shielded completely by the outer environment split under various ligand field strength, and the number of split levels is determined by the local symmetry around the Eu²⁺ ions. For example, in some compounds with O_h symmetry, the 5d orbitals of Eu²⁺ are split into two levels, T_{2g} and E_g .²⁷ In the present case, the incorporated Eu²⁺ ions are tetrahedrally coordinated and presented as a EuN₄ tetrahedron that is very rarely observed. According to the interatomic distances listed in Table 1, the calcium atoms are not located exactly in the center of the tetrahedron but moved to the base, and hence a slightly distorted T_d site symmetry is preferred over the other symmetry groups. The 5d orbitals of Eu^{2+} in such an environment are inclined to be separated as T₂ and E levels. In such a model, the energy transition from the ground state $(^{8}S_{7/2})$ to the barycenters of T₂ and E levels are estimated around 3.75 and 2.41 eV, from the bi-Gaussian fitting of the two excitation bands of the Eu²⁺ ions on an energy scale, respectively. By considering the slightly distorted T_d site symmetry, the energy difference between the T_2 barycenter and the 5d centroid is 1.5 times that between the *E* barycenter and the 5d centroid.²⁸ The location of the energy centroid of the Eu²⁺ 5d orbitals is evaluated about 3.23 eV above the ground state.

The broad emission bands for all Ca_{1-x}Eu_xAlSiN₃ samples are assigned to the allowed $4f^{6}5d \rightarrow 4f^{7}$ transition of Eu²⁺ ions. The sharp characteristic line emission peaks due to ${}^{5}D_{0}$ \rightarrow ⁷F_J transitions of Eu³⁺, which locate from 580 to 630 nm, are not observed even in a phosphorescence mode. In fact, the presence of the N³⁻ ion as the anionic netformer in crystals or glasses gives the reducing potential according to²⁹ $6Eu^{3+} + 2N^{3-} \rightarrow 6Eu^{2+} + 2N_2$. Therefore, only the divalent Eu^{2+} emission is observed in $Ca_{1-x}Eu_xAlSiN_3$ phosphors even though the Eu₂O₃ oxide is used for the conventional solid-state reaction from nitride raw materials (Ca₃N₂, AlN, Si₃N₄). Compared with Eu²⁺-doped alkaline earth oxyhalides or oxysilicates, the emission of $Ca_{1-x}Eu_xAlSiN_3$ occurs at a fairly long wavelength range. As shown in Figure 6b, the emission of Eu²⁺ is mainly determined by two factors: the shift of the energy centroid $(E_{\rm C})$ and effect of crystal field splitting (E_{CFS}). The crystal-field splitting is roughly estimated to be around 1.34 eV from the shape of excitation band, and this value is comparable with other Eu^{2+} doped counterparts.³⁰ Therefore, the long-wavelength emission (Eem = 1.91 eV) is ascribed to the low electronegativity of N^{3-} and high covalency of the Eu-N bond (nephelauxetic effect), which effectively lowers the energy centroid of 5d orbitals of Eu²⁺. This is supported by the result of solid-state reaction synthesis of the nominal $Ca_{1-x}Eu_xAlSiN_3$ from the raw materials of Ca₃N₂, AlN, and Si₃N₄ which contain some oxygen content. At the same Eu²⁺ concentration, the emission

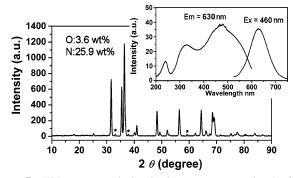


Figure 7. XRD pattern and photoluminescence spectra (inset) of the nominal $Ca_{0.98}Eu_{0.02}AISiN_3$ sample synthesized from the $Ca_3N_2-AIN-Si_3N_4$ solid-state reaction.

peak blueshifts about 10-20 nm compared with the samples prepared by the SHS route. For the 2 atom % Eu²⁺-doped sample containing 3.6 wt % of oxygen content, the emission occurs at 631 nm, and the blue wing extends to the short wavelength part (Figure 7). This means that, by incorporating oxygen content, the N2 sites in the EuN₄ tetrahedrons are partially replaced by O^{2-} ions to form EuN₃O, which reduces the nephelauxetic effect around the Eu²⁺ ions and accounts for the blueshift of the emission band. The emission band is originated from the overlap of two types of Eu²⁺ ions with different environments, and it can be separated on an energy scale by bi-Gaussian fitting to two bands peaking at 1.92 eV (646 nm) and 2.04 eV (607 nm). Whereas for the emission band of Ca_{0.98}Eu_{0.02}AlSiN₃ obtained by SHS synthesis, only single Gaussian fitting is achieved, and the full width at half-maximum (fwhm) of 75 nm is also less than 90 nm for the high oxygen content sample from the solid-state reaction. On the basis of our previous work,⁷ the charge imbalance caused by the substitutional O_N is compensated by the ion vacancy (V_{Ca}) induced by the evaporation of Ca²⁺ at high temperature.

By exciting at different wavelengths (239, 320, and 470 nm), the emission bands peaking at 649 nm show no shift (emission of A', B', and C' in Figure 6a), which is consistent with the fact that there is only one Ca²⁺ site that can be substituted by the Eu²⁺ activator. The Stokes shift (ΔS) is estimated to be 0.27 ± 0.02 eV by using an almost mirror-image relationship between the emission and the excitation spectra.³¹ The transition energy from the 4f⁷ ground state to the 4f⁶5d excited-state for Eu²⁺ is lowered from that of the free ion when it is incorporated into a crystal environment. The relationships are described by Dorenbos as³⁰

$$E_{\rm em} = E_{\rm free} - D - \Delta S; \quad E_{\rm abs} = E_{\rm free} - D$$
 (3)

where E_{free} is the energy difference for the Eu²⁺ ion in the gaseous state and *D* is defined as energy lowering or redshift. The knowledge of E_{em} and ΔS allow us to determine the redshift *D* of the f-d transition in relation to the free Eu²⁺ ion ($E_{\text{free}} = 4.19 \text{ eV}$) in Ca_{0.98}Eu_{0.02}AlSiN₃. The parameter *D* in our case is calculated to be 2.01 ± 0.02 eV and larger than most of the metal nitride phosphors. This is due to, on one hand, the high rigidness of the networks of CaAlSiN₃ in which two-thirds of the N ions are threefold linked.

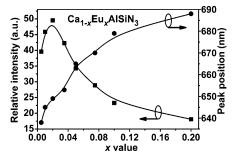
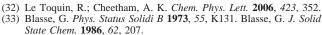
⁽²⁷⁾ Aull, B. F.; Jenssen, H. P. Phys. Rev. B 1986, 34, 6640.

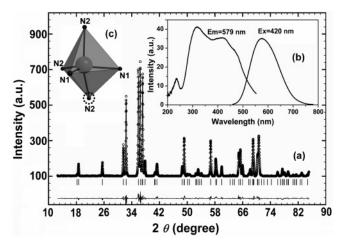
⁽²⁸⁾ Cotton, F. A. Chemical Applications of Group Theory; Wiley-Interscience: New York, 1990.

⁽²⁹⁾ Marchand, R.; L'Haridon, P.; Laurent, Y. J. Solid State Chem. 1978, 24, 71. de Graaf, D.; Hintzen, H. T.; Hampshire, S.; de With, G. J. Eur. Ceram. Soc. 2003, 23, 1093.

⁽³⁰⁾ Dorenbos, P. J. Lumin. 2003, 104, 239.

⁽³¹⁾ Meijerink, A.; Blasse, G. J. Lumin. 1989, 43, 283.


Figure 8. Dependence of emission intensity and peak position of $Ca_{1-x}Eu_xAlSiN_3$ phosphors on Eu^{2+} content.

Consequently, high covalency around the Eu²⁺ activator is expected. On the other hand, the extension of the *E* levels of Eu²⁺ ion in T_d symmetry to the lower energy part also contributes to the larger *D* value. As the redshift coefficient *D* can be regarded as a sum of the lowering of the 5d states centroid and crystal field splitting, the larger *D* accounts for the longer emission of Eu²⁺ in CaAlSiN₃ than in the other nitride hosts, such as CaSiN₂³² or Sr₂Si₅N₈,⁶⁻⁸ which give the band emission peak at 605 and 620 nm, respectively.

Dependence of the peak position and emission intensity on Eu²⁺ ion concentration is shown in Figure 8. Obviously, the strong absorption with increasing Eu²⁺ concentration (see Figure 5) does not always favor the elevation of the emission intensity. In $Ca_{1-x}Eu_xAlSiN_3$, the emission intensity is maximized at around 2 atom % of Eu²⁺ ion dopant concentration. The slightly higher critical Eu²⁺ concentration than that in the previously work¹³ (1.6 atom %) is possibly due to the evaporation of Eu metal during the hightemperature SHS process. The decrease in the emission intensity beyond a critical concentration is ascribed to the concentration quenching effect that is mainly caused by the energy transfer between two Eu²⁺ ions. Because the 4f ⁶5d \rightarrow 4f⁷ transition of the Eu²⁺ ion is allowed as well as the excitation and emission band overlap at 550-630 nm, the energy transfer may occur as a result of multipolar interaction and radiation reabsorption.33 At the same time, the emission peak position of $Ca_{1-x}Eu_xAlSiN_3$ phosphors shifts from 640 to 690 nm by increasing the Eu^{2+} content. Interestingly, the redshifting behavior is in contradiction with the observation of expansion of crystal lattices which should shift the $4f^{6}$ 5d \rightarrow 4f⁷ emission of Eu²⁺ to the high-energy side by decreasing the crystal field strength. This is temporarily contributed to the same reason for the redshifting behavior of Eu²⁺ ions in (Ca, Eu)S and (Sr, Eu)S phosphors.^{13,34} According to the recent work of Sakuma et al.,35 however, it is easily understood by the reabsorption mechanism as in Eu²⁺activated Ca- α -SiAlON. With increasing the Eu²⁺ concentration, the excitation edge (550-600 nm) extends significantly to the longer wavelength side (consistent with Figure 5), and then the reabsorption reduces the high-energy portion of the emission band, while the long wavelength part gains

(34) Kaneko, Y.; Koda, T. J. Cryst. Growth 1988, 86, 72. Kaneko, Y.; Morimoto, K.; Koda, T. Ouyoubutsuri 1981, 50, 289 (in Japanese).

Figure 9. Rietveld refinement analysis (a), photoluminescence spectra (b), and crystallographic environments around Eu^{2+} ions of annealed $Ca_{0.98-}Eu_{0.02}AlSiN_3$ phosphor.

Table 3. Rietveld Refinement Result of the Annealed CaAlSiN₃ Host

						-
atom (site)	x	у	2	2	Occupancy	$U_{\rm iso}$ [Å ²]
Ca (4a)	0	0.349	4 0.9	9200	0.9128	0.0545
Al/Si (8b)	0.1743	0.851	2 -0.0	0364	1	0.0212
N1 (8b)	0.2269	0.866	68 0.3	3284	1	0.0046
N2 (4a)	0	0.235	0.4	4082	0.901	0.1422
O (4a)	0	0.235	0.4	4082	0.099	0.1422
Ca _{0.913} AlS	99	selected distances and angles				
formula weight	133.88		Ca-N1 ^I	2.5203	N1 ^I -Ca-N1 ^{II}	117.559
cell parameters	a = 9.49	9(5) Å	Ca-N1 ^{II}	2.5203	N1 ^I -Ca-N2 ^I	92.926
	b = 5.65	9(6) Å	Ca-N2 ^I	2.3532	N1 ^I -Ca-N2 ^{II}	118.733
	c = 4.99	8(2) Å	Ca-N2 ^{II}	2.5243	N1 ^{II} -Ca-N2 ^I	92.926
$R_{\rm p}$ (%)	9.01				N1 ^{II} -Ca-N2 ^{II}	118.733
$R_{\rm wp}$ (%)	14.1				N2 ^I -Ca-N2 ^{II}	106.308

intensity. Consequently, the reabsorption derived by the energy transfer results in the redshifting of the emission band.

In addition to studying the activator concentration effect on the emission of the red phosphor, the postannealing effect is also investigated. Generally, the annealing treatment will enhance the emission intensity by improve the crystallinity of the phosphors. In our case, however, the structure distortion is observed unexpectedly by the annealing of the as-prepared samples at 1700 °C for 6 h under 0.2 MPa N₂. The Rietveld refinement for the host is carried out on the same space group $(Cmc2_1)$ as that shown in Figure 9a, and the result is listed in Table 3. The obtained XRD pattern is well indexed to the JCPDS card 39-0747, which is found as CaAlSiN₃ in CaO-AlN-Si₃N₄ by Huang et al.³⁶ The occupancy of the Ca site is refined as 0.913, and when combined with the measured oxygen content of 1.2 wt %, the chemical composition is expressed as Ca_{0.913}AlSiN_{2.901}O_{0.099} for the annealed host. The lattice constants are somewhat smaller than those of the as-prepared CaAlSiN₃, which can be ascribed to the formation of the vacancy on Ca sites during high-temperature annealing. Additionally, the photoluminescence properties of the annealed sample deviate interestingly from the corresponding Ca_{0.98}Eu_{0.02}AlSiN₃ phosphor (as-prepared). As shown in Figure 9b, the emission occurs at the much higher energy side (579 nm), and the excitation band gets narrowed compared with the as-prepared one. If

⁽³⁶⁾ Huang, Z. K.; Sun, W. Y.; Yan, D. S. J. Mater. Sci. Lett. 1985, 4, 255.

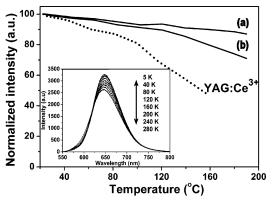
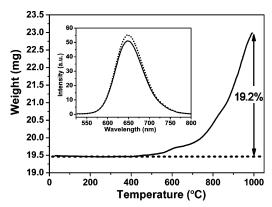



Figure 10. The temperature-dependent emission intensity of $Ca_{1-x}Eu_xAlSiN_3$ samples with x = 0.02 (a) and 0.05 (b), and the inset shows the low-temperature emission of $Ca_{0.98}Eu_{0.02}AlSiN_3$.

only four nearest N³⁻ are considered, the mean distance of Ca-N bonds in the annealed sample is 2.4795 Å, and it is larger than that in the as-prepared one (2.4515 Å). A weaker crystal field strength, which is inversely proportional to R^5 (R: chemical bond length between a cation with d orbital electrons and the coordinating anion),³⁷ is expected for the annealed sample. Induced by the lattice shrinkage, the Ca ion moves further to the bottom of the tetrahedron and almost locates in the N1-N1-N2 plane (Figure 9c). This is in accordance with the refinement of angles listed in Table 3. In this case, the fifth coordinated N³⁻ ion ($d_{Ca-N} = 2.638$) has to be taken into account. Therefore, the variation of the surrounding environment of doped Eu²⁺ ions results in the narrowing of the excitation band and high-energy emission for the annealed sample. Though this annealed phosphor cannot be efficiently excited at 460 nm, its strong absorption in the range of 380-420 nm indicates the application by combining with another type 405 nm blue LED chip.

In the white LED application, a low-temperature quenching effect is in favor of keeping the chromaticity and brightness of white light output. The temperature-dependent emission intensity of the optimized Ca_{0.98}Eu_{0.02}AlSiN₃ sample is shown in Figure 10. As the temperature increases from 5 to 280 K, the emission band peaking at 649 nm keeps the position, and the intensity is decreased by 17% of the initial value. With heating the samples up to 150 °C at which the white LEDs usually work, the emission intensity of Ca_{0.98}Eu_{0.02}AlSiN₃ and Ca_{0.95}Eu_{0.05}AlSiN₃ remains at about 90% and 83% of that measured at room temperature, while at about 60% for the YAG:Ce³⁺ (P46-Y3) phosphor. The widely accepted mechanism for the thermal quenching is the electronic transition through the intersection between the 4f⁶-5d and 4f⁷ states. In addition, recently another mechanism of thermally activated ionization from the 4f65d to the conduction band is proposed to elucidate the thermal quenching behavior in the Eu^{2+} doped oxynitride $SrSi_2O_2N_2$ host with a rigid structure framework.³⁸ On the basis of the high quenching temperature and small stokes shift of the Eu²⁺ ion in the rigid CaAlSiN₃ host, the low thermal quenching effect is closely related to the thermally activated ionization.

Figure 11. TG curve of $Ca_{0.98}Eu_{0.02}AlSiN_3$ and (inset) the comparison of emission intensity for the same sample before (solid line) and after (dotted line) the acid process.

Of course, the small stokes shift derived low transition probability from the $4f^{6}5d$ to the $4f^{7}$ state cannot be excluded.

Furthermore, as a nitride phosphor, the optimized Ca_{0.98}Eu_{0.02}AlSiN₃ shows excellent thermal and chemical stabilities. By the thermal gravity (TG) analysis up to 1000 °C (Figure 11), the oxidization of Ca_{0.98}Eu_{0.02}AlSiN₃ is found to occur at a temperature higher than 400 °C and then oxidized gradually to the corresponding Ca₂Al₂SiO₇ and SiO₂ (by XRD analysis). The weight increase is observed to be 19.2%, which is close to the stoichiometric value of 21.6% for the above two compounds. The high threshold of oxidization indicates that the Ca_{0.98}Eu_{0.02}AlSiN₃ is oxygenresistant before 400 °C, which is much higher than the operating temperature of white LEDs. In addition, as shown in the inset of Figure 11, the emission intensity of Ca_{0.98}Eu_{0.02}AlSiN₃ is compared before and after soaking in 5 mol/L nitric acid for 72 h for the chemical stability test. After the acid soaking process, the intensity is slightly increased rather than decreased by acid corrosion, which means that the target phosphor is chemically stable in the ambient atmosphere. The slight increase of emission intensity may be contributed to removal of some acid-soluble impurities, such as the glass phase formed at high temperature.

For the potential application of this phosphor to the white LED illumination, the strong absorption in the range of 400-470 nm indicates that the $Ca_{1-x}Eu_xAlSiN_3$ phosphor can be efficiently excited by the blue light source of GaN and InGaN LEDs. The emission intensity of the optimized Ca_{0.98}Eu_{0.02}AlSiN₃ phosphor by SHS is compared with the CaAlSiN₃:Eu²⁺ sample prepared according to ref 13 (Mitsubishi Company provided) and commercially available YAG:Ce³⁺ (P46-Y3) standard. At the excitation of 460 nm, the intensity reaches about 95% of that prepared by solidstate reaction at high temperature and pressure and 120% of the YAG:Ce³⁺ standard. The CIE (Commission Internationale del'Eclairage) 1931 chromaticity index of this phosphor is (0.647, 0.347) which indicates the red emission of Ca_{0.98}Eu_{0.02}AlSiN₃ phosphor has high color saturation. Thus, this phosphor can be used to compensate the red color deficiency of YAG:Ce3+-based white LEDs or to create white light by combining with a blue LED chip and another green phosphor.

⁽³⁷⁾ Kanou, T. Handbook of Phosphors; Ohm Press: Tokyo, 1987.

⁽³⁸⁾ Bachmann, V.; Jüstel, T.; Meijerink, A.; Ronda, C.; Schmidt, P. J. J. Lumin. 2006, 121, 441.

4. Conclusions

The efficient red phosphors, CaAlSiN₃:Eu²⁺, have been successfully prepared by SHS from the CaAlSi intermetallic alloy precursor. The ignition occurs at 1050 °C, and further nitridation processes at higher temperature (1450-1550 °C) lead to the formation of CaAlSiN₃:Eu²⁺ phosphors. The result of Rietveld refinement indicates the Eu²⁺ ions are tetrahedrally coordinated when they are incorporated into the host. Thus, the long emission is ascribed to the strong nephelauxetic effect in the rigid network and crystal field splitting in slightly distorted T_d symmetry. The sample doped with the Eu²⁺ ion at the optimized concentration of 2 atom % (vs Ca atom) is efficiently excited by the blue light (400-470 nm) and gives the red emission, peaking at 649 nm. The emission intensity exceeds (about 20%) that of the YAG:Ce3+ (P46-Y3) standard at the same excitation of 460 nm. The postannealing treatment results in the formation of vacancies on Ca sites and distortion of the crystal structure. The variation of photoluminescence properties is attributed to the change of the surrounding environment of Eu²⁺ ions. As a nitride phosphor, the optimized sample exhibits a low-temperature

quenching effect, as well as excellent chemical and thermal stabilities. In addition, the saturated chromaticity index of (0.647, 0.347) also indicates that this efficient phosphor can be used as a potential candidate for the phosphor-converted white LEDs.

Acknowledgment. This work was partially supported by a Grant-in-Aid for the Scientific Research (No. 16080210) on Priority Areas (440) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Note Added after ASAP Publication. There was an error in the Supporting Information file that accompanied the version of this paper that was published ASAP August 11, 2007; the correct Supporting Information file was published August 17, 2007.

Supporting Information Available: Photographs of asprepared and annealed $Ca_{0.98}Eu_{0.02}AlSiN_3$ under UV light and under daylight (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

CM070623C