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Abstract—The ultimate purpose of a pedestrian-detection
system (PDS) is to reduce pedestrian-vehicle-related injury. Most
such systems tend to adopt expensive sensors, such as infrared
devices, in expectation of better performance. In comparison, a
low-cost optical-camera-based system has much potential practi-
cal value, including a greater detection range, and can easily be
trained to detect other objects. However, such low-cost systems are
difficult to design (e.g., little original information can be collected,
and the scene is very complex). To address these problems, an
effective and reliable classifier is needed. The classifier should have
a proper structure, its features need to be well selected, and a large
number of high-quality samples are necessary for training. In this
paper, we present a low-cost PDS which only uses a single optical
camera. We design a cascade classifier to achieve an effective and
reliable detection. First, our system scans two sequential frames
at each zoom scale with a sliding window. Second, with each
window, both appearance and motion features are extracted. A
well-trained cascade classifier, combining statistical learning with
a decomposed support-vector-machine classifier, then determines
whether the window contains a human body. At the same time,
to provide as much information as possible about the pedestrian,
a small-scale weighted template tree trained by a coevolutionary
algorithm is adopted to identify each pedestrian’s direction, and
the distance of each from the vehicle is also provided using an
estimation algorithm. During the training procedure, we select key
features by using the AdaBoost algorithm and a large number
of high-quality samples. Experimental results demonstrate that
the system is suitable for pedestrian detection in city traffic: The
detection speed is more than 10 ft/s, the detection rate reaches
80%, and the false positive rate is no more than 0.3‰.

Index Terms—Cascade classifier, coevolutionary algorithm,
decomposed support vector machines (SVMs), pedestrian-
detection system (PDS), small-scale weighted template tree,
statistical learning.
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I. INTRODUCTION

THIS PAPER addresses the challenge of how both to guar-
antee road safety and to reduce pedestrian-vehicle-related

injury. A pedestrian-detection system (PDS) is one approach
to this challenge. Most PDSs tend to be based on complicated
expensive devices such as an infrared camera [1]–[6] or even
radar [7] in order to sense as much information as possible
to enable detection. For example, Xu et al. [1] proposed a
typical PDS with an infrared camera to detect pedestrians in a
night scene. Bertozzi et al. [2], [3] proposed a system equipped
with a pair of infrared cameras which can detect pedestrians in
stereo images. The PROTECTOR system (currently SAVE-U)
is arguably the most complicated and practicable PDS so far [7].
Not only can it detect pedestrians in real time, but it also traces
them and makes risk assessment. However, its performance
appears, to a certain extent, to be a consequence of its high-
cost hardware (an optical camera, an infrared camera, and five
custom-built radars).

On the other hand, a simple and low-cost PDS with a single
optical camera is still worth investigating due to its potential
practical value. Compared with the expensive systems, the low-
cost system with normal cameras has remarkable advantages:
1) It can obtain fast and reliable performance if well designed;
2) it has a greater detection range; and 3) it can easily be
trained to detect other objects, regardless of whether they have
temperature characteristics.

However, such a low-cost system is difficult to design. The
most difficult issue is the scene complexity, and also, little
practicable information can be gathered with only one optical
camera. In general, a PDS needs at least the techniques of
feature extraction and classification. Therefore, an effective
and reliable classifier is needed, and enough features must be
extracted. First, the classifier should have a proper structure,
its features need to be well selected, and a large number of
high-quality samples are necessary for training. If the classifier
is poorly designed or trained, it will have a low positive rate
or high false positive rate when it has a high detection speed.
Conversely, the requirement of high positive rate and low false
positive rate will lead to a low-speed classifier and makes real-
time detection impossible. Second, features such as appearance
and motion need to be extracted (most systems are based either
only on appearance [8], [9] or motion [10]–[14], and very few
use both appearance and motion features [15]–[17]). Therefore,
it is hard to design a single-optical-camera-based PDS for
practical use in which both the detection rate and the detection
speed are accepta
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Fig. 1. Architecture of our PDS.

There are several PDSs which are based on a single optical
camera. For example, Gavrila [18] proposed a car-mounted
system. He adopted a chamfer system to select candidates using
edge features and then applied a pattern classification such as
radial basis functions with a richer set of intensity features
to verify the candidates. However, he only managed to locate
a pedestrian with a low speed and a high false positive rate.
The reason for this may be that the features are not properly
selected and that the system performance is not good for both
the detection rate and the detection speed. Moreover, Viola et al.
[19] proposed a PDS for static scenes which was the first to use
both the appearance and motion information in the detection
phase. They also proposed the integrated image algorithm,
which is an extremely efficient method to represent image mo-
tion. The AdaBoost algorithm is also introduced in [19] to train
a statistical-learning classifier with huge samples. The system
could even operate on low-resolution images under difficult
conditions (such as in rainy or snowy weather). However, using
a single statistical-learning classifier can only achieve a high
detection rate. The detection speed of the system proposed
in [19] is 4 ft/s, which cannot meet the real-time detection
demands; therefore, new methods are needed. Further, this is
not a vehicular-based system.

Pedestrian-detection methods can not only be used for
driving assistance but also for other areas such as automatic
pedestrian-counting security systems, traffic/pedestrian control
systems, and automatic switching systems. The main difference
is that for driving assistance, a PDS is based on the information
from a moving camera, and for other applications, most PDSs
are based on the information from a static camera. This causes
technical differences between the PDS for driving assistance
and for other applications.

For other applications using the static cameras, the feature
used in PDS is also mainly based on the shape or motion in-

formation. Furthermore, there are many other features adopted
to assist detection. For example, Shashua et al. [20] proposed
a PDS which took nine main parts of a human body and
their position relations as key features to detect pedestrians,
Havasi et al. [21] designed a special PDS mainly using the sym-
metry of human legs to detect walking, and Andrade et al. [22]
provided an optical flow-based PDS for automatic pedestrian
counting.

In this paper, we design a vehicular- and single-optical-
camera-based PDS. The system detects pedestrians using a
cascade classifier using both the appearance and motion fea-
tures. The detection procedure is as follows: 1) Obtain the
appearance and motion information from sequential frames
(only the region of interest (ROI) is dealt with in the orig-
inal frame pair); 2) recognize a human body in each sliding
window using a combination of a statistical-learning classifier
and a decomposed support-vector-machine (SVM) classifier;
and 3) estimate the distance from the vehicle of each detected
pedestrian, and identify his/her direction. The system is suit-
able for pedestrian detection within 25 m from the camera
with a vehicle speed that is not faster than 60 km/h in the
daytime.

The remainder of this paper is arranged as follows. Section II
describes in detail the architecture and the detection procedure
of our system. Section III introduces the training procedure.
Section IV shows the experimental design and results, and
finally, this paper is concluded in Section V.

II. DECTECTION PROCEDURE OF THE SYSTEM

The architecture of our system is shown in Fig. 1. As de-
scribed in the left half of the figure, the detection procedure
contains a cascaded classifier module that takes charge of
the pedestrian detection and another module that deals with
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distance estimation and direction identification. The detection
procedure is described as follows.

while (the vehicle is moving)
{

intercept the next pair of sequential frames from the video
flow;
while (not all the sliding windows have been detected)
detect the pedestrian in the next sliding window;
/∗ perform an exhaustive scan on the ROI at every zoom
scale ∗/
estimate the detected pedestrians’ distance, and identify
his/her direction;
output the detection result;
/∗ pedestrian’s location, distance, and orientation ∗/

};

Furthermore, in order to accelerate the detection process, we
only deal with a particular region of the original frame pair.
This ROI is a rectangular region in which the pedestrians might
cause a collision with the vehicle.

A. Classification Based on a Cascaded Classifier

The general detection stage is described as follows.
Step 1) From the recorded video, intercept the ROI from two

sequential frames. The following process only deals
with the ROI.

Step 2) Select a constant Z(0 < Z < 1), set the initial value
of N to be zero, and it is increased by one for
each iteration. The process ends when N = 7. The
zoom factor is ZN (e.g., when Z = 0.8, the zoom
factor serials are 1, 0.8, 0.64, 0.51, 0.41, 0.33, 0.26,
and 0.21).

Step 3) Move the sliding window on the zoomed ROI, and
then, use a cascaded classifier to identify the pedes-
trian figures. Go to Step 2).

The details of Step 3) are described as follows.
Step 3.1) Intercept two images in the sliding window from

the zoomed ROI; the sliding window moves from
the left top to the right bottom of the ROI.

Step 3.2) Extract both the appearance and motion features
from the two images using the shifting and sub-
tracting image techniques [9].

Step 3.3) Use these features and the cascaded classifier to
detect a pedestrian figure.

Step 3.4) If a pedestrian figure is detected, output his/her
information for further direction identification and
distance estimation.

In this module, Step 3.3) is the most important. The cascaded
classifier judges whether there is a pedestrian in each sliding
window. The cascaded classifier is a combination of two differ-
ent classifiers: The first part is a statistical-learning classifier,
which aims to select preliminary candidates; the second part is
a decomposed SVM classifier [1], [23]–[25], which carries out
an accurate classification. The reason to have such a cascade
is that, during the tests, we found that the statistical-learning
classifier was very fast and had a low false negative rate, but

its false positive rate was high. Comparatively, the decomposed
SVM classifier had a very high positive rate and a low false
positive rate, but it was much slower; hence, we cascade the
two classifiers. The statistical-learning classifier acts as the
front of the cascade to achieve very quick scanning in order
to reduce the amount of the target area for consideration by the
decomposed SVM classifier, which then performs an accurate
classification, thus improving both detection rate and speed.

The statistical-learning classifier works as follows.
1) Compute the key features of a sliding window as the

input.
2) Calculate each classification function of each filter, and

then, get ten values fi(x); each filter has a weight ωi.
3) Calculate f(x) =

∑
i=1 to 10 ωifi(x). If f(x) ≥ θ (θ is a

threshold), then it is a pedestrian; otherwise, it is not.
4) If it is a pedestrian, add it to the output chain; else, do

nothing.
As to ωi and θ, they are all trained by the AdaBoost algorithm

[26], [27]. At the same time, the proper subset of features has
also been selected.

After the statistical-learning classifier phase, there remain
about 100 candidates to be considered further in the ROI. Then,
the decomposed SVM classifier will do a precise classification.
It works as follows.

1) Compute the key features of a candidate as the input
vector.

2) Calculate f(x)= sgn(
∑

Support Vector yiαik(xi, x) − b);
here, k(x, y) = (x · y + 1)2.

3) If f(x) = 1, then it is a pedestrian; otherwise, it is not;
4) If it is not a pedestrian, remove it from the output chain;

else, do nothing.

B. Distance Estimation and Direction Identification

Usually, a PDS with a single optical camera can obtain
relatively little information from the images. Until now, only
few systems have accessory functions to estimate a pedestrian’s
distance from the vehicle and to identify his/her direction. How-
ever, in the system presented here, we both estimate the distance
of a pedestrian according to the zoom scale and develop a
distance-transform (DT) algorithm [18], [28], [29] to identify
direction.

Gavrila [30] has summarized several methods for direc-
tion identification. All these methods are complex and time-
consuming; hence, we propose a simple method instead.

1) We design a small-scale weighted template tree. A tem-
plate is a typical human shape obtained from real traffic.
Obviously, we need to select several templates for each
direction. Different templates have different characteris-
tics; therefore, each template needs to be weighted.

2) To forecast a pedestrian’s direction, we match the de-
tected pedestrian with each template in the template tree,
and the pedestrian’s orientation is then considered to be
the same as the most similar templates. In the matching
process, we apply a DT algorithm to scale the similarity
of two binary images (gray-scale images must be con-
verted to binary images for the DT algorithm first).
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Fig. 2. Samples with a dimension of 32 × 16; a pair of images comprises a
single example for training. The ones in 24 × 12 are similar.

III. TRAINING OF THE SYSTEM

A. Feature Extraction

The performance of a classifier strongly depends on the
features adopted. To extract both the appearance and motion
features, Viola and Jones [26] proposed an extremely effective
method, and in this paper, we use a similar method to extract
the features for each classifier.

B. Sample Formulization

We cascade the two classifiers to accelerate detection speed.
In order to improve the detection rate, the classifiers must first
be well trained.

For a classifier, large numbers of high-quality samples are
very important. In the training process, first, we obtain a large
number of various pedestrian/nonpedestrian (negative/positive)
samples. Due to the need for motion information, we use two
grayscale images extracted from the same place in consecutive
frames to form a training sample. As we use a fixed-size sliding
window to detect pedestrians, all samples should be scaled to
the same size as the sliding window. We prepared samples in
both 32 × 16 and 24 × 12 for the comparisons of experiments
and determine which is better.

For each size, we have produced 3600 positive sample
pairs and 3000 high-quality negative sample pairs from large
amounts of video of real city traffic. Here, high-quality means
that the negative samples are very similar to a human body,
such as trees, etc. We also automatically produced a large
number of negative sample pairs (about 1 000 000 pairs). All
of these samples were used to train the statistical-learning
classifier, whereas only the high-quality negative sample pairs
and the false positive sample pairs from the statistical-learning
classifier were used to train the decomposed SVM classifier.

Examples of some training samples in our system are shown
in Fig. 2 (the training sample and the test-video database are
available at http://nical.ustc.edu.cn/PDS/).

C. Statistical-Learning Classifier

The statistical-learning classifier is itself a cascaded system
composed of ten filters, as shown in Fig. 3. Appearance features
are used in the first seven cascades, which are organized in
series. In order to increase the positive rate, we add motion

Fig. 3. Architecture of the statistical-learning classifier.

Fig. 4. Training and detection procedures of the decomposed SVM classifier.

features to the classifier because motion is an attribute of the
pedestrian. The motion features are adopted in the other three
filters, which are parallel connected. We trained each filter with
a positive rate no less than 0.95, whereas the false positive rate
of filter i must be no more than 0.1 + (i − 2) × 0.05 (◦/◦◦).

In the first seven filters, only when an object is estimated as
a positive one by the present filter that it can be sent to the
next one; otherwise, it will be estimated as a negative one by
the classifier. After the object passes through all the first seven
filters, it is separately assessed by the other three filters. The
object will be considered as a positive one only when at least
two of the posterior filters estimate it as positive.

In our system, the statistical-learning classifier is used to
select candidates for the decomposed SVM classifier; therefore,
it must be fast with a very low false negative rate, and the false
positive rate needs to be as low as possible.

D. Decomposed SVM Classifier

The training and detection procedures of the decomposed
SVM classifier are shown in Fig. 4.

The training procedure can be described as follows.

Step 1) Select a feature subset.
For each sample, after the original feature set is

obtained, we apply the AdaBoost algorithm to select
a subset from it. Suppose that the size of the subset
is n and that each feature ck corresponds to a feature
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function fk(A,B), k = 1, . . . , n, where A and B
are the bitmap matrices representing a sample.

Step 2) Compute the feature vector of each sample.
Before the information of a sample is used by the

decomposed SVM, it must be converted to a feature
vector. We can use the feature functions to compute
it. For example, we use a pair of bitmap matrices
Ai and Bi to represent the sample Si, where i =
1, . . . , l, and l is the number of training samples.

Vector xi = ( f1 (Ai, Bi ), f2 (Ai, Bi ), . . . ,
fn(Ai, Bi)) is computed and treated as the feature
vector of Si.

Step 3) Train a classifier using a decomposed SVM.
Here, we adopt a decomposition SVM algorithm

proposed by Joachims [25]. Using Joachims’ de-
composed method requires the size of working set
and the kernel function to be determined beforehand.
In our training, we choose 20 as the size of the
working set, and the kernel function is k(x, y) =
(x · y + 1)2.

E. Training a Small-Scale Weighted Template Tree

In our system, in order to identify a pedestrian’s direction
of movement, we design a small-scale weighted template tree.
By matching a pedestrian with all the templates in the tree, we
obtain the probable direction of the pedestrian.

The tree is well organized with typical templates. A template
is the edge of a typical human shape obtained from the real
traffic, and its size is the same as the sliding window. In the
tree, when a detected pedestrian is matched with a template,
we obtain only his/her preliminary direction, and it may be
inaccurate. In order to increase the correctness of identification,
it is necessary to select various templates; however, this needs
to be a small enough set of templates to ensure processing
speed. Therefore, we select 30 representative templates. As
different templates have different characteristics, their ability to
describe a pedestrian’s orientation is also different. Therefore,
each template needs to be accurately weighted.

During the identification of the pedestrian’s direction, we
apply a DT algorithm [18], [28], [29] to match a pedestrian with
the templates; for the DT algorithm, we must efficiently scale
the similarity between two binary images. The DT algorithm
determines a DT value of two images of the same size, and if
the value is small, then the two images are similar.

In the identification procedure, we match the pedestrian
with all the templates in each direction and then determine
the summation of the weighted DT values in each direction.
We regard the pedestrian’s moving orientation as the direction
which has the smallest DT summation.

Our system is able to distinguish pedestrians in three direc-
tions: left, right, and middle. Several typical templates in three
directions are separately shown in Fig. 5.

Populating the weighted template tree to obtain typical tem-
plates and associated weights is important as there are about
4000 types of template, and typically, less than 50 will be cho-
sen. Optimization methods can solve this problem; however, in
contrast to other approaches, a new coevolutionary algorithm,

Fig. 5. Templates (with a dimension of 32 × 16) in three directions.

which has been mentioned in our previous work [29], is used to
efficiently build the template tree in our system. This algorithm
has the following advantages.

1) The algorithm is evolution-based and is suitable for the
cases where the search space is large. As the amount
of templates is quite large, the algorithm is relatively
effective.

2) Compared with the traditional evolution-based algo-
rithms, the coevolutionary algorithm integrates the infor-
mation at individual level for generations; thus, it has
good specialization, generalization, and efficiency.

3) As it is known, population size is a key factor in an
evolution-based algorithm because it determines the pop-
ulation state space and then affects the algorithm’s con-
vergent performance. If the population size is too small,
the algorithm may suffer from premature convergence
and lose the global optimum; if the population size is
too big, it results in excess computation. The coevo-
lutionary algorithm used here introduces a strategy to
self-adaptively and globally asymptotically adjust the
subpopulation size. Thus, the algorithm possesses the
ability to maintain the proper subpopulation size.

The generating procedure of the template-searching tree can
be described as follows.

With the coevolutionary algorithm, the template tree will
be built by a clustering method. For the current template set,
templates which are highly similar (and together have a low
DT value) will be clustered into one group. In each clustered
template group, a representative template will be selected and
act as the father node of the group. The set of father nodes then
becomes the template set for the next iteration. This procedure
will be repeated until the size of the current template set reduces
to one, and then, the template tree is built bottom-to-top. The
following algorithm is used to find a high-quality group division
in each run of the procedure.

1) Because the templates are divided into three types, the
template tree can be divided into three subtrees. We
use one subpopulation for the tree construction of each
template type, and then, three subpopulations are used
in the coevolutionary algorithm. We initialize three sub-
populations for the algorithm, where an individual is a
solution of the group division.

2) The fitness value of an individual is computed by the sum
of DT values in all groups, which is denoted as f(x).
Individuals with lower fitness value are better solutions.
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Fig. 6. Small-scale weighted template tree with only three levels.

3) For each pair of individuals (a, b), a �= b in the same
subpopulation, the worst one may be eliminated with
the probability of α, and the better one has a chance
(denoted as β) to produce a bonus offspring. To prevent
a subpopulation from increasing indefinitely, β should be
less than α.

4) Between different subpopulations, for each pair of in-
dividuals (a, b), let coefficient wab denote the influence
of b upon a. We define wab =(f(b)−f(a))/(N(fmax−
fmin)), where N is the total number of individuals in all
subpopulations, and fmax and fmin are the maximum and
minimum of fitness values in all subpopulations of the
current generation.

Obviously, wab is positive when b is inferior to a and
negative when b is superior to a. Similarly to internal
evolution, a positive wab will give a additional chances,
which are equal to wab, to produce a bonus offspring,
whereas a negative wab will cause a to be eliminated with
the probability of −wab.

5) For each individual a ∈ Pi, it has a chance (denoted as ρ)
to produce an offspring.

6) Repeat steps 3) to 5).
After the template-searching tree is built, we select several

top levels as the small-scale template tree and then weigh the
templates in each direction. We use the AdaBoost algorithm to
train the template tree with the positive samples, obtaining the
weight of each template. The training procedure is similar to
that of the statistical-learning classifier.

An example of the weighted template tree is shown
in Fig. 6.

IV. EXPERIMENTS

A. Preparation

We have designed three separate experiments to assess the
performance of the proposed PDS. The first experiment is to test
the detection performance of our system, the second experiment
is to verify the effectiveness of the motion features, and the
performance of an individual classifier was also tested; the
final experiment is to assess the performance of the distance
estimation and the direction identification. All experiments

were carried out on a Pentium IV 2.8-GHz computer with
512-MB double data rate RAM, and most test materials were
captured with a digital vidicon (Sony DCR-HC21E).

To prepare for the experiments, in order to train the classifiers
and test the performance of the proposed system, we captured
more than 30 h of video in an urban area (Hefei, China) from a
moving vehicle. The average speed of the vehicle was 45 km/h,
and the digital vidicon was fixed in the car.

By using part of the video records, we manually made
3600 positive sample pairs and 3000 negative sample pairs.
In addition, 1 000 000 negative sample pairs are automatically
generated. These samples are used for classifier training.

The rest of the video records were used to evaluate the
performance of an individual classifier. There were 476 video
clips used; each had 450 frames (30 ft/s and was 15 s long). The
detection performance mainly depends on the traffic condition;
hence, we divided the video clips into seven types, including
one type that has no pedestrian in the video record.

The key parameters were set as follows. The verification
videos were in 320 × 240 resolution, and the size of the ROI
was 240 × 120 (pixel × pixel); with a zoom factor of 0.8,
the ROI needed to be zoomed seven times for 32 × 16 sliding
window or eight times for 24 × 12 window.

B. Experiment 1: Detection-Performance Verification

This experiment was designed to test the main function of our
system, and the detection performance was evaluated by three
key parameters: detection rate, false positive rate, and detection
speed. In order to thoroughly test the system, both the training
samples and the verification videos of urban traffic were chosen.
The overall results of pedestrian detection with both sliding
window sizes (24 × 12 and 32 × 16) for 1000 positive samples
and 3000 negative samples, as well as seven typical type test
videos, are listed in Table I.

The experimental results in Table I indicate the following.

1) The system achieves a good performance with both sam-
ple sizes: 24 × 12 and 32 × 16. With videos of real
city traffic, the detection speed is more than 10 ft/s, the
detection rate reaches about 80%, and the false positive
rate is no more than 0.3‰.
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TABLE I
SYSTEM DETECTION PERFORMANCE WITH DIFFERENT SAMPLES IN SIZE

Fig. 7. ROCs of the cascaded classifier with different test videos and samples in different sizes. (a) ROC with test video (6) and samples in size of 24 × 12.
(b) ROC with test video (3) and samples in size of 32 × 16.

2) Compared with the 24 × 12 samples, which have a detec-
tion range of 35 m (the detection range is the maximum
distance that the pedestrians can be away from the car),
the detection speed of the 32 × 16 ones is even faster
(the classifier works less because it zooms a few times),
and the detection rate is obviously increased, although the
detection range reduces to approximately 25 m.

The system finally selected the 32 × 16 templates because
25 m is already enough to assist driving in real traffic when the
vehicle speed is less than 60 km/h.

C. Experiment 2: Effectiveness of Motion Features and
Performance of Each Classifier

An important issue is whether the motion filer was efficient.
Hence, we tested the system performance with/without motion

features, and the comparative results shown the effectiveness of
the motion features.

With two kinds of sample [24 × 12 and 32 × 16 (pixel ×
pixel)], the rate of change (ROC) cures of the cascaded classifier
with some test videos is shown in Fig. 7. Fig. 7 showed
that the detection rate significantly increases with the dynamic
detection (using both the appearance and motion features) than
with the static detection (using only the appearance features).
Hence, the motion features enhance the detection ability of the
system.

Further, in order to compare the performance of the com-
bination of two classifiers with the individual classifiers, we
separately present the performance of the individual stages, i.e.,
the statistical-learning stage and the decomposed SVM stage, as
shown in Fig. 8. The corresponding average performances are
listed in Table II.
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Fig. 6. Small-scale weighted template tree with only three levels.

3) For each pair of individuals (a, b), a �= b in the same
subpopulation, the worst one may be eliminated with
the probability of α, and the better one has a chance
(denoted as β) to produce a bonus offspring. To prevent
a subpopulation from increasing indefinitely, β should be
less than α.

4) Between different subpopulations, for each pair of in-
dividuals (a, b), let coefficient wab denote the influence
of b upon a. We define wab =(f(b)−f(a))/(N(fmax−
fmin)), where N is the total number of individuals in all
subpopulations, and fmax and fmin are the maximum and
minimum of fitness values in all subpopulations of the
current generation.

Obviously, wab is positive when b is inferior to a and
negative when b is superior to a. Similarly to internal
evolution, a positive wab will give a additional chances,
which are equal to wab, to produce a bonus offspring,
whereas a negative wab will cause a to be eliminated with
the probability of −wab.

5) For each individual a ∈ Pi, it has a chance (denoted as ρ)
to produce an offspring.

6) Repeat steps 3) to 5).
After the template-searching tree is built, we select several

top levels as the small-scale template tree and then weigh the
templates in each direction. We use the AdaBoost algorithm to
train the template tree with the positive samples, obtaining the
weight of each template. The training procedure is similar to
that of the statistical-learning classifier.

An example of the weighted template tree is shown
in Fig. 6.

IV. EXPERIMENTS

A. Preparation

We have designed three separate experiments to assess the
performance of the proposed PDS. The first experiment is to test
the detection performance of our system, the second experiment
is to verify the effectiveness of the motion features, and the
performance of an individual classifier was also tested; the
final experiment is to assess the performance of the distance
estimation and the direction identification. All experiments

were carried out on a Pentium IV 2.8-GHz computer with
512-MB double data rate RAM, and most test materials were
captured with a digital vidicon (Sony DCR-HC21E).

To prepare for the experiments, in order to train the classifiers
and test the performance of the proposed system, we captured
more than 30 h of video in an urban area (Hefei, China) from a
moving vehicle. The average speed of the vehicle was 45 km/h,
and the digital vidicon was fixed in the car.

By using part of the video records, we manually made
3600 positive sample pairs and 3000 negative sample pairs.
In addition, 1 000 000 negative sample pairs are automatically
generated. These samples are used for classifier training.

The rest of the video records were used to evaluate the
performance of an individual classifier. There were 476 video
clips used; each had 450 frames (30 ft/s and was 15 s long). The
detection performance mainly depends on the traffic condition;
hence, we divided the video clips into seven types, including
one type that has no pedestrian in the video record.

The key parameters were set as follows. The verification
videos were in 320 × 240 resolution, and the size of the ROI
was 240 × 120 (pixel × pixel); with a zoom factor of 0.8,
the ROI needed to be zoomed seven times for 32 × 16 sliding
window or eight times for 24 × 12 window.

B. Experiment 1: Detection-Performance Verification

This experiment was designed to test the main function of our
system, and the detection performance was evaluated by three
key parameters: detection rate, false positive rate, and detection
speed. In order to thoroughly test the system, both the training
samples and the verification videos of urban traffic were chosen.
The overall results of pedestrian detection with both sliding
window sizes (24 × 12 and 32 × 16) for 1000 positive samples
and 3000 negative samples, as well as seven typical type test
videos, are listed in Table I.

The experimental results in Table I indicate the following.

1) The system achieves a good performance with both sam-
ple sizes: 24 × 12 and 32 × 16. With videos of real
city traffic, the detection speed is more than 10 ft/s, the
detection rate reaches about 80%, and the false positive
rate is no more than 0.3‰.
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TABLE IV
PERFORMANCES OF DIFFERENT PDSS

the shelter ratio has more influence on the correct identification
rate than the distance. Nevertheless, the proposed direction-
identification method was shown to be efficient in normal
situations.

To improve the performances of these two accessory func-
tions, we plan to use a recognition-based tracking technique in
the future.

E. Summarization and Comparison With Other Typical PDSs

To assess the contribution of this paper, we compared
our system with four typical PDSs with similar/different
settings.

Table IV lists the performances of typical PDSs. It indicates
that our system has an acceptable performance compared with
other PDSs; at the same time, our system is low cost.

V. CONCLUSION

This paper has proposed a vehicular PDS using one optical
camera. The system adopts cascaded classification using both
the statistical learning and the decomposed SVM classification.
In contrast to most other PDSs with a single optical camera,
this system uses both the appearance and motion features for
detection. Furthermore, by using a new algorithm (proposed in
our previous work [29]), the system can quickly and precisely
identify the direction of a pedestrian and estimate his/her dis-
tance from the vehicle.

In general, compared with the infrared-camera-based PDS,
the single-optical-camera-based PDS is low cost, has longer
detection distance, and is not influenced by temperature. In
addition, the technology developed for the single-optical-
camera-based PDS can also be used for other integrated
systems.

The experiments show that the single-optical-camera-based
PDS algorithm in this paper has a very good performance in
both the pedestrian detection and the direction identification.

Future work includes the following:
1) hardware and algorithm design of a PDS, which is suit-

able for high-speed vehicle assistance. To achieve this,
we envisage needing a dynamic shift in gathering motion
information;

2) hardware and algorithm design of PDS to further increase
the detection performance;

3) hardware and algorithm design of PDS to handle spe-
cial situations, such as pedestrians that are suddenly
rushing out.
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