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This study analyzed the workpiece surface quality (Ra) and the material removal rate (MRR) on process parameters during machining

SKD11 by medium-speed wire electrical discharge machining (MS-WEDM). An experimental plan for composite design (CCD) has been

conducted according to methods response surface methodology (RSM) and subsequently to seek the optimal parameters. The experimental

data were utilized to model MRR and Ra under optimal parameter condition by a backpropagation neural network combined with genetic

algorithm (BPNN-GA) method. Eventually, the comparisons between the results from BPNN-GA and those from the RSM demonstrate

that BPNN-GA method is a more effective way for optimizing MS-WEDM process parameters.
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INTRODUCTION

Wire electrical discharge machine (WEDM) is a high-
precision processing equipment, mainly used in the mold,
instrument, and manufacturing industries. Up to now,
the WEDM can be classified as high-speed WEDM
(HS-WEDM) and low-speed WEDM (LS-WEDM)
based on the speed of wire moving. HS-WEDM is a
new product of independent innovation in China, which
has taken up more than 85% of the Chinese domestic
market due to the advantages of lower cost and thicker
workpieces. However, LS-WEDM have more advan-
tages in aspects like working speed, working accuracy,
surface roughness and degree of automation. Therefore,
numerous was here been made to narrow the gap
between HS-WEDM and LS-WEDM, thus generating
a new concept called medium-speed WEDM (MS-
WEDM). Improving control system, high frequency
power supply and operation software on the basis of
HS-WEDM, MS-WEDM can be obtained, which rea-
lizes multiplicity cutting in higher capacity to achieve
high machining productivity. However, because of lots
of affecting factors and the randomness of process, it
tough even for a skillful engineer to achieve the optimal
effect [1]. An effective solution to this problem is to ascer-
tain the relationship between the processing performance
and its main parameters, and then to optimize the
machining parameters. Two main methods, namely
response surface methodology (RSM) and a backpropa-
gation neural network combining with genetic algorithm
method (BPNN-GA), can be proposed to solve this.

As for RSM, Spedding and Wang [2] proposed a
mathematic model by RSM with the input parameters
and the output responses. Similarly, Kung and Chiang
[3] established a mathematical model by RSM to predict
MRR and Ra. Hewidy and El-Taweel [4] established
mathematical models by RSM to optimize main process
parameters of WEDMmachining Inconel 601. Recently,
Tzeng [5] implemented RSM to establish mathematical
models of machining SKD11 by the CNC turning, and
Chauhan [6] optimized of process parameters in turning
of Titanium (Grade-5) Alloy by RSM. Malapati [7]
implemented RSM to develop mathematical models of
the process parameters on material removal rate
(MRR) to increase process accuracy in electrochemical
micromachining. On the other hand, as for BPNN-GA,
Tzeng and Yang [8] adopted the BPNN with integrated
GA in the process optimization for WEDM aiming to
develop MRR and Ra. Kim [9, 10] implemented general-
ized regression neural network and genetic algorithm
(GA) to strengthen image of material surfaces by mod-
elling the SEM and to optimize of wavelet-filtered data.
Lin [11] implemented an integrated approach based on
neural network, GA, and the Taguchi method to model
the weld bead geometry of gas tungsten arc.
Some recent researches, based on response surface, arti-

ficial neural network (ANN) and GA, have been com-
pared as follows Quintana et al. [17] developed an ANN
model to predict power consumption and to determine
the optimal cutting parameters of milling operations, then
he used a trial and error procedure and early stopping
method for the architecture of the ANN in order to solve
overfitting or overtraining problems. Chih-Cherng Chen
et al. [18] established a statistical model to achieve the
multiobjective optimization by RSM and GA. Bhargava
et al. [19] proposed a hybrid multiobjective evolutionary
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optimization algorithm by multidimensional RBFs-based
response surface method. Simultaneously, an automatic
internal switching algorithm was applied to increase the
Pareto approximation and reduce the redundant compu-
tation. Judging from the above, few papers are discussing
the use of MS-WEDM for machining die steel SKD11
material through establishing mathematical models by
RSM and BPNN-GA. So there is an urgent demand
towards developing appropriate models to strengthen
the performance of machining SKD11 by MS-WEDM.
In this article, the main work highlighted that math-

ematical models were developed to correlate the relation-
ships of mainMS-WEDMprocess parameters of die steel
SKD11 material on MRR and Ra, and then the optimal
processing parameters were obtained. This research was
based on the RSM and BPNN-GA.

EXPERIMENT DESIGN AND PROCEDURES

Materials

The workpiece is a 40-mm-thick block of SKD 11 alloy
tool steel, which contains high carbon and high chro-
mium, mainly used in the manufacturing of mold and
in the die industry. SKD11 is composed of C: 1.50%,
Cr: 12.0%, Mo: 0.80%, V: 0.7%, Mn: 0.45%, and Si:
0.25%. The yield stress is 330MPa, the youngs modulus
is 200GPa, the hardness is 61 HRC, the electrical resis-
tivity is 0.65 (X�m), and the thermal conductivity is 20.0
(W=m�k).

Equipment and specimens

Figure 1 illustrates the machining equipment of
MS-WEDM, and experiments were carried out on a
medium-speed WEDM with maximum processing cur-
rent of 10 A, maximum feed speed of 7.5m=min, and
maximum processing speed of 170mm2=min (Dongguan
Hustinova PrecisionMachinery Co., Ltd., China). More-
over, the molybdenum wire diameter was 0.12mm, and
each workpiece was processed with a thickness of
0.03mm and a length of 20mm.

Experiment Design and Results

Generally, the MS-WEDM process contained three
phrases, namely roughing, finishing, and surface finish-
ing. Surface finishing leads to the productivity and sur-
face quality, which means two key points must be
taken into consideration simultaneously. Then the cut-
ting speed and surface roughness are regarded as the
measures of the MS-WEDM performance. In order to
improve the model capacity of predicting the process
results under given inputs, a reasonable input parameter
setting has to be chosen. According to experience, survey,
and some preliminary investigations, the machining
quality of MS-WEDM is mainly influenced by inputs
in Table 1.
Table 1 illustrates the values and levels of the input

parameters covering the available range according to
the characteristics of MS-WEDM.

A 5-level, 5-factor, 32-set uniform-precision central
composite design (CCD) [12, 13] under coded conditions
for modeling MS-WEDM process is shown in Table 2. It
contains a half replication of 32 factorial design with
center points and star points. RSM does not require a
large number of runs or too many levels of the inde-
pendent variables according to Myers and Montgomery
[12]. On the other hand, especially for a practical proces-
sing experiment, the data size of 32 sets is extensive
enough to develop the fitted model to find the optimum
accurately. MINITAB 16 is a statistical analysis soft-
ware for modelling the respond surface. Two output

FIGURE 1.—The experimental equipment (color figure available online).

TABLE 1.—Factors and their levels of the surface finishing.

Input factors

Level=code

1=-2 2=-1 3=0 4=1 5=2 unit

A-the pulse-on time : 1 3 5 7 9 ms
B-the pulse-off time : 10 25 40 55 70 ms
C-the pulse current : 1 2 3 4 5 A

D-the wire speed : 3 5 7 9 11 m=s

E-the tracking coefficient : 40 50 60 70 80 –
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parameters are chosen to reflect the productivity and sur-
face quality: MRR and surface roughness (Ra). The
MRR is calculated by the following equations (Eq. 1
and Eq. 2). Then, Ra has been measured in perpendicular
to the cutting direction at 0.8mm nicks by Taylor-
Hobson (Talysurf 5–120) surface roughness tester. The
mean of five measured values at five different places
was regarded as the result value:

vc ¼
60� l

t
; ð1Þ

MRR ¼ vc �H � k; ð2Þ

where the vc is the average feed rate in mm=min, a the l
and the t are the cutting length in mm and time in s,
respectively. TheH and the k are the workpiece thickness
and cutting thickness in mm, respectively, and the MRR
is thus measured in mm3=min.

OPTIMIZATION METHODOLOGIES

RSM and BPNN-GA were regarded as optimization
methodologies to optimize the input parameters.

Figure 2 is a flow chart showing the steps to determine
an optimal process setting.
The steps in detail are as follows:

1. Identify main goals. The main goal is to obtain an
optimal setting to minimize Ra and maximize MRR.

2. Design experiments. A 5-level, 5-factor, 32-set CCD
was used to carry out the experiment.

3. Experiment and measurement. The experimental
plan was conducted on MS-WEDM corresponding
to CCD table, while MRR and Ra were obtained.

4. Optimization process parameters. The process model
was developed to achieve an optimal parameter by
RSM and BPNN-GA methods.

5. Result comparison. Compared the optimal para-
meters of the RSM with that of the BPNN-GA,
confirmation experiment was carried out.

RSM Technique

RSM can be proposed to solve the correlation of input
parameters with outputs of MS-WEDM processing.
The general second-order polynomial response is

described in Eq. 3:

Y ¼ b0 þ
Xp

i¼1

bixi þ
Xp

i¼1;j¼1

Xp

i<j

bijxixj þ
Xp

i¼1

biix
2
i þ E;

ð3Þ

where Y is the measured response, b0 is the constant
term which is estimated by mean of minimum squares,
bi is the linear effect, bij is the interactive effect of xj

TABLE 2.—Results of experiment.

No. A B C D E vc(mm=min) Ra (mm) MRR (mm3=min)

1 3 25 2 5 70 7.69 6.1 9.228

2 7 25 2 5 50 15.38 3.627 18.456

3 3 55 2 5 50 16.67 3.28 20.004

4 7 55 2 5 70 12.5 2.66 15

5 3 25 4 5 50 20 2.92 24

6 7 25 4 5 70 25 3.489 30

7 3 55 4 5 70 16.67 2.714 20.004

8 7 55 4 5 50 34.29 3.578 41.148

9 3 25 2 9 50 14.29 2.582 17.148

10 7 25 2 9 70 30.77 2.688 36.924

11 3 55 2 9 70 30 2.562 36

12 7 55 2 9 50 46.15 2.918 55.38

13 3 25 4 9 70 42.86 2.565 51.432

14 7 25 4 9 50 42.86 3.632 51.432

15 3 55 4 9 50 46.15 2.622 55.38

16 7 55 4 9 70 46.15 4.357 55.38

17 1 40 3 7 60 44.44 3.252 53.328

18 9 40 3 7 60 46.15 3.557 55.38

19 5 10 3 7 60 50 4.187 60

20 5 70 3 7 60 42.86 3.225 51.432

21 5 40 1 7 60 34.28 2.994 41.136

22 5 40 5 7 60 52.18 2.942 62.616

23 5 40 3 3 60 34.28 3.054 41.136

24 5 40 3 11 60 38.71 2.063 46.452

25 5 40 3 7 40 34.29 1.689 41.148

26 5 40 3 7 80 30.77 1.64 36.924

27 5 40 3 7 60 27.14 1.833 32.568

28 5 40 3 7 60 30 1.801 36

29 5 40 3 7 60 30.8 1.753 36.96

30 5 40 3 7 60 31.67 1.855 38.004

31 5 40 3 7 60 30.8 1.785 36.96

32 5 40 3 7 60 31.67 1.995 38.004

Ra: Surface roughness (Ra), MRR: Material removal rate.

FIGURE 2.—Flow chart of obtaining optimal process.
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and xi (input variables), bii is the second order effect,
and E is the experimental random error component.
In the present study, a second-order predictive model

about input parameters and the responses of
MS-WEDM was established by the RSM due to the
high predictability of this model. Then the adequacy of
this second-order predictive model was verified by the
analysis of variance (ANOVA). Montgomery [12]
described that P< 5% (at 95% confidence level) mani-
fests that the optimal model is believed to be appropriate
and significant in statistics.

Mathematical predictive model developed for Ra. The
ANOVA for the complete second-order fitted model
of Ra (Table 3 as follows) illustrated the term of E�E
(P¼ 0.6) is insignificant effect and should be removed
from predictive model in order to avoid the underfitting
or lack of fit problem. After removing the term of E�E,
the simplified model was better and more accurate
according to Table 3. Most of the values of P are less than
0.05, which means that the model is effective.
Analyzing residuals with residual plot (Fig. 3(a)) is

a valid method to prove whether the developed model
is accurate or not. Residual plot has four parts which
are normal probability plot (Fig. 3(a)a), scatter diagram
of fitted values (Fig. 3(a)b), histogram of residuals
(Fig. 3(a)c) and scatter diagram of observation sequence

(Fig. 3(a)d). Normal probability plot (Fig. 3a) and histo-
gram of residuals (Fig. 3(a)c) demonstrate that residuals
fit normal distribution. Scatter diagram of fitted values
(Fig. 3(a)b) shows that residuals keep homogeneity of
variance and shape infundibula. Scatter diagram of
observation sequence (Fig. 3(a)d) illustrates that scatter
dots fluctuate randomly and irregularly between top and
bottom of a horizontal axis without abnormal trend. It
can be confirmed that developed model is reasonable
normal through analyzing residual plot.
The analysis above demonstrates that the second-

order model for Ra is appropriate to express the
MS-WEDM process. The equation to obtain Ra is as
follows (Eq. 4).

Ra ¼ 21:9112� 1:86286A� 0:291579B� 4:39521C

� 1:95097Dþ 0:140665E þ 0:105211A2 þ 0:00220542B2

þ 0:311719C2 þ 0:0063875A� Bþ 0:214563A� C

þ 0:0769375A�D� 0:00968125A� E þ 0:017675B

� C þ 0:0102B�D� 0:0000911B� E þ 0:1685C

�D� 0:0076875C � E � 0:0035625D� E ð4Þ

Then optimal parameters setting and optimization dia-
gram onRa obtained by the RSMare as follows (Table 4).

TABLE 3.—ANOVA for Ra (lm) of the complete and simplified second-order model.

Source

The complete model The simplified model

DOF Seq SS Adj SS Adj MS F P DOF Seq SS Adj SS Adj MS F P

Regression 20 27.552 27.5552 1.37776 57.37 0 19 27.5483 27.5483 1.44991 64.16 0

Liner 5 3.0624 3.0624 0.61248 25.5 0 5 3.0624 3.0624 0.61248 27.1 0

A 1 0.2042 0.2042 0.20424 8.5 0.014 1 0.2042 0.2042 0.20424 9.04 0.011

B 1 0.9745 0.9745 0.97445 40.58 0 1 0.9745 0.9745 0.97445 43.12 0

C 1 0.0173 0.0173 0.01728 0.72 0.414 1 0.0173 0.0173 0.01728 0.76 0.399

D 1 1.7195 1.7195 1.71949 71.6 0 1 1.7195 1.7195 1.71949 76.09 0

E 1 0.147 0.147 0.14695 6.12 0.031 1 0.147 0.147 0.14695 6.5 0.025

Square 5 13.9293 13.9293 2.78587 116 0 4 13.9223 13.9223 3.48059 154.03 0

A�A 1 3.7388 5.1635 5.16349 215 0 1 3.7388 5.2315 5.23154 231.51 0

B�B 1 6.2923 7.1854 7.18542 299.2 0 1 6.2923 7.2733 7.27335 321.87 0

C�C 1 2.5967 2.8268 2.82679 117.71 0 1 2.5967 2.8702 2.87021 127.02 0

D�D 1 1.2945 1.2698 1.26977 52.87 0 1 1.2945 1.2945 1.29452 57.29 0

E�E 1 0.007 0.007 0.007 0.29 0.6 – – – – – –

Interaction 10 10.5635 10.5635 1.05635 43.99 0 10 10.5635 10.5635 1.05635 46.75 0

A�B 1 0.5875 0.5875 0.58752 24.46 0 1 0.5875 0.5875 0.58752 26 0

A�C 1 2.9464 2.9464 2.94637 122.69 0 1 2.9464 2.9464 2.94637 130.39 0

A�D 1 1.5154 1.5154 1.51536 63.1 0 1 1.5154 1.5154 1.51536 67.06 0

A�E 1 0.5999 0.5999 0.59985 24.98 0 1 0.5999 0.5999 0.59985 26.55 0

B�C 1 1.1247 1.1247 1.12466 46.83 0 1 1.1247 1.1247 1.12466 49.77 0

B�D 1 1.4982 1.4982 1.49818 62.38 0 1 1.4982 1.4982 1.49818 66.3 0

B�E 1 0.2987 0.2987 0.29866 12.44 0.005 1 0.2987 0.2987 0.29866 13.22 0.003

C�D 1 1.8171 1.8171 1.8171 75.66 0 1 1.8171 1.8171 1.8171 80.41 0

C�E 1 0.0946 0.0946 0.09456 3.94 0.073 1 0.0946 0.0946 0.09456 4.18 0.063

D�E 1 0.0812 0.0812 0.08122 3.38 0.093 1 0.0812 0.0812 0.08122 3.59 0.082

Residual 12 0.2642 0.2642 0.02402 12 0.2712 0.2712 0.0226

error

Total 31 27.8194 31 27.8194

DOF: Degrees of freedom, Seq SS: sequential sum of squares, Adj SS: adjusted sum of squares, Adj MS: adjusted mean squares.
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Mathematical predictive model developed for
MRR. With the same method as the above, Table 5
of the ANOVA for the MRR with simplified second-
order model can be achieved. The P values of some
terms are more than 0.05 in the Table 5, which means
this simplified second Corder model by RSM is not very
significant. On the other hand, after analyzing residuals
with residual plot (Fig. 3(b)), it can be concluded that
residuals fit normal distribution and keep homogeneity
of variance. So this model still has certain value for ref-
erence to optimal parameters setting.
The analysis above demonstrates that the second-

order model for MRR is also appropriate for expressing
the MS-WEDM process. The equation to obtain MRR

is as follows (Eq. 4):

MRR ¼ �156:127þ 1:55475Aþ 1:22189Bþ 6:81650C

þ 1:43625Dþ 4:25941E � 0:028173E2

þ 0:064025B�D� 0:025865B� E: ð5Þ

Then optimal parameters setting and optimization
diagram on MRR obtained by the RSM as follows
(Table 4).

Optimization Method of with BPNN-GA

BPNN has the capacity to solve incomplex nonlinear
problems such as modeling, prediction, optimization,
and adaptive control [14]. While GA has the capacity
of multiparameter optimization in many research fields.

FIGURE 3.—Residual plot for Ra (mm) and MRR (mm3=min) (color figure

available online).

TABLE 4.—Optimal setting on Ra (mm) and MRR (mm3=min).

Method
Input
factor

Pulse-on
time

Pulse-off
time

Pulse
current

Wire
speed

Tracking
coefficient

Predicted
value

RSM Ra 3.1 34.85 2.66 10.4 40 1.1

MRR 9 70 5 11 43.6 95.8

BPNN-GA Ra 5.02 42.66 2.14 10.9 45.45 1.69

MRR 7.31 33.94 1.82 10.44 47.04 69.25

TABLE 5.—ANOVA for MRR (mm3=min) after simplifying the model.

Source DOF Seq SS Adj SS Adj MS F P

Regression 8 3552.85 3552.85 444.11 3.74 0.006

Liner 5 3014.87 3014.87 602.97 5.08 0.003

A 1 232.06 232.06 232.06 1.96 0.175

B 1 75.4 75.4 75.4 0.64 0.434

C 1 1115.15 1115.15 1115.15 9.4 0.005

D 1 1533.89 1533.89 1533.89 12.92 0.002

E 1 58.37 58.37 58.37 0.49 0.49

Square 1 238.12 238.12 238.12 2.01 0.17

E�E 1 238.12 238.12 238.12 2.01 0.17

Interaction 2 299.87 299.87 149.93 1.26 0.302

B�D 1 59.03 59.03 59.03 0.5 0.488

B�E 1 240.84 240.84 240.84 2.03 0.168

Residual error 23 2729.57 2729.57 118.68

Total 31 6282.42

FIGURE 4.—Flow chart of the BPNN-GA.
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Zemin [15] considered that BPNN-GA has been applied
to develop the traditional ANN for multiparameter
optimization problems. In a word, BPNN-GA is an
optimization approach that combines the capacity of
nonlinear fitting of neural network with the capacity of
nonlinear optimizing of genetic algorithm. In the
BPNN-GA, predicted results of BPNN after training
is regarded as the fitness value of individual, and then
optimal results can be achieved after the operation of
reproduction, crossover and mutation.
Fig. 4 is a flow chart showing how to obtain an optimal

process by the BPNN-GA. The platform to create the BP
and was based on MATLAB Neural Network Toolbox.
The complete BPNN is made up of an input layer, hid-

den layers, and an output layer. The experimental results
with expansions were regarded as inputs of the neural
networks for training. Input vectors contained A, B, C,
D, and E, output vectors consisted of Ra or MRR. The
hyperbolic tangent and linear transfer function were

TABLE 6.—The effects of different numbers of hidden neurons on the

BPNN for Ra (mm) and MRR (mm3=min).

Network No.of 1st No.of 2nd
Mean error
of Ra (%)

Mean error
of MRR (%)

SHL network 7 – 35.13(%) 21.02(%)

8 – 18.00(%) 21(%)

9 – 25.11(%) 25.01(%)

DHL network 5 – 12.31(%)

7 6 – 24.28(%)

7 – 22.13(%)

3 23.12(%) 19.69(%)

8 4 14.57(%) 17.50(%)

5 22.14(%) 16.16(%)

5 23.31(%) –

9 6 27.60(%) –

7 27.45(%) –

SHL network: single-hidden-layer network, DHL network: double-hidden-layer
network, No.of 1st: No.of neurons in 1st hidden layer, No.of 2nd: No.of neurons
in 2nd hidden layer.

FIGURE 5.—Fitness curve of Ra (mm) and MRR (mm3=min) (color figure available online).
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separately utilized for the hidden and output layers.
Additionally, the convergence function (Eq. 6) (used
for judging train finish) is

MSE ¼ 1

N

XN

i¼1

ðdi � yiÞ
2; ð6Þ

Where MSE is the mean squared error, N is the number
of experimental points, and di and yi are, respectively,
the values of experimental and predicted value in train-
ing sample i.
The number of the hidden layers of BPNN should be

taken into consideration [16]. To achieve the best value
of Ra or MRR under optimal input setting, single and
double hidden-layer networks with different neurons
were trained, respectively, and then their results were
examined and compared to find the most suitable model.
It is concluded from Table 6 that the mean error of
14.57% for Ra is available in the best case of 5-8-4-1
neural networks. Simultaneously, it is also concluded
from table 6 that the mean error of 12.31% for MRR is
available in the best case of 5-7-5-1 neural networks.
On the other hand, GA is used as a nonlinear optimiz-

ing method to find out the best extremum. GA adopted
real coding as individuals and the length of individual
was 5 corresponding to 5 input parameters. Fitness
values of individuals were predictive values of BPNN.
The roulette wheel method was selected for repro-
duction. Simultaneously, the crossover probability was
0.4 by two-point approach, and the mutation rate was
0.2. Fig. 5a and Fig. 5b show the fitness curve of Ra
and MRR by BPNN-GA including the best fitness and
average fitness. An optimal combination of process
parameters is achieved via the BPNN-GA as in (Table 4).

RESULT AND DISCUSSION

Influence of Cutting Conditions on Ra and MRR

Through observing and analyzing all the surface plots
of RSM, the best surface plot (Fig. 6) was selected
according to the significance of input factors for Ra. It
apparent that A and B have a significant impact on
response variable Ra for the reason that change trend
of surface plot (Fig. 6a) is extremely steep. There exists
the bottom dot in the response surface plot which means
the smallest Ra with the combination of input factors (A
and B). In the 3D surface plot (Fig. 6b), it is concluded
that when the values of A and B choose medium numbers
(B is about 40 and A is between 2.5 and 5), Ra is smaller
than the situation when A and B are boundary values.
The higher discharge energy destroys too much and
explodes with spark and gas bubbles on the finished sur-
face at the long time of pulse-on, while the lower energy is
insufficient to destroy the workpiece surface at the long
time of pulse-off. Simultaneously, through observing
and analyzing all the surface plots forMRR, the best sur-
face plot (Fig. 7) was chosen. It is apparent that D (wire
speed) and E (tracking coefficient) have a significant
effect on MRR for the same reason. There also exists

the top dot in the response surface plot which means
the largest MRR with the combination of control factors
(D and E). In the 3D surface plot (Fig. 7b), it is
concluded that when the values of D increase and E is
the medium number, MRR becomes larger. Increasing
wire speed can result in decreasing in the rate of wire
abrasion so as to enhance the efficiency of machining
hard surface. Tracking coefficient, which controls the
feed speed and adjusts the gap between workpiece and
wire, has a significant impact on MRR.

Comparison of the Two Methods and Confirmation

Two different approaches were utilized to optimize
process parameters and obtain optimal combination of
process parameters for Ra and MRR, respectively.
Confirmation experiment should be conducted to compare
and judge which optimization approach is more effective
and significant, and then to verify the conclusions which
are described from the analysis phase. The results of con-
firmation experiments under the optimal combination of
process parameters are listed in Tables 7 and 8. The relative
residuals of Ra and MRR from RSM are 33.3% and
53.28%, respectively, while the relative residuals of Ra
and MRR from BPNN-GA are 1.2% and 5.24%, respect-
ively. By comparison of residuals from RSM and BPNN-
GA, as for the optimal models on Ra and MRR, the
applied BPNN-GA approach gives more accurate results
of prediction and confirmation than the RSM approach.

FIGURE 6.—Surface plot of Ra (mm) with A and B (color figure available

online).
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In this study, the most appropriate architecture of neural
network was developed by method of trial and error. Evol-
utionary neural network (EVONN) [20, 21] has become a
popular multiobjective optimization approach to configure
themost suitable weights and topology by using predatorc-
prey GA and a Pareto frontier. The most suitable network

is achieved through Akaike information criterion (AIC),
Bayesian information criteria (BIC), or the final prediction
error (FPE) to avoid overfitting and underfitting problems.
This approach had been applied successfully in some dif-
ferent manufacturing fields and would be a good alterna-
tive to BNPP-GA model of this. On the other hand, as
for multiobjective optimization, EVONN has been
extended to genetic programming (GP), which is emerging
as an efficient alternate of ANN [22, 23]. To develop a
data-drivenmodel, GP [22] can construct themathematical
function (encoded as tree) between inputs and responses by
the use of a function set and a terminal set. However, the
conventional GP has some defects: the lower error tree
may lead to overfitting problems, while the larger error
could result in underfitting problems. Therefore, a new
GP technique, the bi-objective evolutionary genetic pro-
gramming (BioGP), was proposed. A complex and accu-
rate metamodel can be constructed by the BioGP
approach [23] which can not only minimize training error
based on a single objective optimization strategy but also
work out an appropriate trade-off between training error
and complexity of the GP trees. The experimental work
of this article is extensive enough to offer the accurate
and practical methods, so the use of EVONN, GP, or
BioGP is less necessary. But these methods have provided
some good options to deal with the data-driven modeling
and the multiobjective optimization.

CONCLUSION AND FUTURE WORK

The present research proposed an effective approach
and framework of optimizing process parameters of
machining SKD11 that integrates RSM with BPNN-
GA. The proposed approach and framework can give
the optimal process parameter settings on Ra and
MRR for MS-WEDM machining SKD11, respectively.
The following conclusions are drawn from the present
researcher:

1. RSM indicates that pulse-on and pulse-off time are
two most significant factors for Ra, while wire speed
and tracking coefficient are two most significant
factors for MRR. The higher values of pulse-on
time or wire speed generate rougher surfaces
(decreases Ra) and increases MRR.

2. The integrated BPNN-GA approach applied is
utilized to achieve the optimal parameter settings
of Ra and MRR for MS-WEDM process. In
addition, as for the optimal models on Ra and
MRR, the BPNN-GA approach shows more accu-
rate results of prediction and confirmation than
the RSM approach.

3. The predicted accuracy of BPNN has a closed
relationship with the significance of optimal results.
In other words, due to predicted results of the
trained BPNN being regarded as the fitness value
of individual, the optimal results can be achieved
by the nonlinear optimizing of GA. The more accu-
rately BPNN predicted, the more effective and
significant optimal results are.

FIGURE 7.—Surface plot of MRR (mm3=min) with D and E (color figure

available online).

TABLE 7.—Results of confirmation experiment on Ra (mm).

Applied
method

Optimal parameters Ra

A B C D E Predicted Exp.
Relative
residual

RSM 3.1 34.85 2.66 10.4 40 1.1 1.65 33.3%

BPNN-GA 5.02 42.66 2.14 10.9 45.45 1.69 1.71 1.2%

TABLE 8.—Results of the experimental confirmation on MRR (mm3=min).

Applied
method

Optimal parameters MRR

A B C D E Predicted Exp.
Relative
residual

RSM 9 70 5 11 43.6 95.8 62.5 53.28%

BPNN-GA 7.31 33.94 1.82 10.44 47.04 69.25 65.8 5.24%
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4. In this article, Ra andMRR are respectively regarded
as output response in the optimal model. In the future
work, the relationship of cutting conditions and
surface crack formation, such as whiter layer, crack,
and microsurface topography, will be investigated.
In addition, one computer-aided process planning
(CAPP) system, which guides process in order to
optimize cutting conditions, will be built in the MS-
WEDM.
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