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A b s t r a c t - - I n  this paper, we give existence and uniqueness results for solutions of multipoint 
boundary value problems of the form 

x' =/(t, x(t)) + e(t), t e (0,1), 

~'~ A#z(,lj) = O, 
j= l  

where f : [0,1] x R '~ --* R '~ is s Carathdodory function, Ajs  (j  -- 1,2 . . . .  ,m)  are constant square 
matrices of order n, 0 < r/1 < r/2 < . . .  < r/m-1 < ~m _< 1, mad c(t) E LI([0, 1], R'~). The existence of 
solutions is proven by the coincidence degree theory. As an application, we also give one example to 
demonstrate our results. © 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - F i r s t - o r d e r  system, Existence and uniqueness of solution, Multipoint boundary value 
problems, l~redholm operator, Coincidence degree. 

1. I N T R O D U C T I O N  

We are interested in the existence of solutions of the following multipoint boundary value problem 
(BVP): 

x' = f(t, x(t)) + e(t), t E (0, 1), (1.1) 

A:(~) = 0, (1.2) 

where f : [0, i] x R n --, R '~ is a Caxath~odory function, Ajs (j = I, 2,..., m) are constant square 
matrices of order n, 0 _< ~1 <~ 772 < ' ' "  < ~m--1 < ~m < 1, and e(t) E LI([0, 1],R n) are given. 
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1308 B. L1u 

When m = 3 and e(t) -- O, the above BVP was very recently studied by Ma [1] using the 
Leray-Schauder continuation theorem. However, the existence results in [1] mainly depend upon 
a restrictive condition, i.e., 

det(A1 + A2 + An) ¢ 0. 

It is therefore natural to ask whether similar existence results can be obtained if det(A1 + A2 h- 
An) = 0. So in this paper, we will derive existence results for BVP (1.1),(1.2) when ~-~j=lm Aj = 0, 
which gives a partial answer to the questions stated above. The key tool in our approach is based 
upon the coincidence degree theory of Mawhin [2,3]. 

We remark that  there are a number of studies concerned with the existence of solutions to 
second-order multipoint boundary value problems; see, for example, [4-8] and references therein. 
However, to our knowledge, few papers can be found dealing with multipoint boundary value 
problems of first-order systems except for the works due to Ma [1] and Murty and Sivasun- 
daram [9]. In [9], Murty and Sivasundaram studied the existence and uniqueness of solutions to 
BVP (1.1),(1.2) (when m = 3, e(t) - 0) using the Banach contraction mapping principle, and 
the key conditions in [9] depend on the fundamental matrix of the variational system of (1.1). 
This requires f to be a continuously differentiable function. 

Now, we will briefly recall some notation and an abstract existences result. 
Let Y, Z be real Banach spaces, L : dom L C Y ~ Z be a Fredholm map of index zero and 

P : Y --* Y, Q : Z --* Z be continuous projectors such that  I m P  = KerL,  KerQ = I m L  and 
Y = KerL  @ KerP ,  Z = I m L  ~ ImQ. It follows that  L[domLnKerP : domL n K e r P  - .  I m L  is 
invertible. We denote the inverse of that  map by Kp. If f~ is an open bounded subset of Y such 
that  dora L N f~ ¢ ~, the map N : Y --* Z will be called L-compact on ~ if Q N ( ~ )  is bounded 
and Kp( I  - Q ) N  : (2 --* Y is compact. 

The theorem we use is Theorem 2.4 of [2] or Theorem IV.13 of [3]. 

THEOREM A. Let L be a Fredholm operator of index zero and let N be L-compact on ~. Assume 
that the following conditions are satisfied: 

(i) L x  ¢ A Y x  for every (x, A) e [(dotaL \ g e r L  n 0f~)] x (0, 1); 
(ii) N x  • Im L for every x E Ker L fq 0~; 

(iii) deg(QNIgerL, ~ fl KerL,  0) ~ 0, where Q : Z --* Z is a projection as above with I m L  = 
KerQ. 

Then the equation L x  = N x  has at /eas t  one solution in d o m L  fq ~. 

Throughout this paper, the function g : [0, 1] x R n --* R ~ is a Carath~odory function, which 
m e a n s  

(i) g(t, .) is continuous on R '~ for a.e. t E [13, 1], 
(ii) g(., x) is Lebesgue measurable on [0, 1], for each x E R ~, 

(iii) for each p > 0, there exists an h o E LI([0, 1], R ~) such that  

I f i ( t , z ) l < ( h p ) , ( t ) ,  fora.e,  t e [ 0 , 1 ] ,  I lxl l<0,  and i = l , . . . , n .  

As usual, the notation we will use herein is mostly standard. We denote the n x n identity 
matrix by E,  the Banach space of all constant square matrices of order n by Mnxn with the norm 

IIBII = m a x  I b , , j l .  
l <_i,j <_n 

For c~ = (c~1,... ,an)  T E R n, define 

I1 11 = m a x  I I  
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Exis tence and Uniqueness  of Solutions 

The corresponding Ll-norm in LI([0, 1], R '~) is defined by 

Ilzll  = max Iz (t)l dr. 
l < i < n  

The L°°-norm in C([0, 1], R '~) is 

IIxL[oo = max sup ]x~(t)l. 
l<~<n re[0,11 

Furthermore, in this paper, we always assume the following: 

(H) ~ j ~ l  & = 0 and d e t ( E j ~  1 & ~ j )  # 0. 

2.  M A I N  R E S U L T S  

1309 

Since the problem 

PROOF. 

ALso, 
IIKpylloo <-IlYlI1, for a / / y  e ImL.  

It is clear tha t  KerL  = {x E domL : x = d, d e R'~}. We now show that  

{ } I m L =  y E Z :  A~ y(s) d s = 0  . 
j = l  

X I ___.~y 

has a solution x(t), that  satisfies ~ j = l  Ajx(~j)  = 0 if and only if 

?Tg 

j = l  

(2.1) 

(2.2) 

(2.3) 

In this section, we shall prove the existence and uniqueness results for solutions of BVP 
(1.1),(1.2). 

Let Y = C([0, 1], Rn), Z = L 1([0, 1], Rn). Define L to be the linear operator from dom L c Y 
to Z with 

and Lx  = x ~, x E dom L. We define N : Y ~ Z by setting 

N x  = Y(t, x(t)) + e(t), t e [0, 1], 

then BVP (1.1),(1.2) can be written 
Lx = Nx .  

LEMMA 2.1. Let (H) hold, then L : d o m L  C Y ~ Z is a Fredholm operator of index zero. 
Furthermore, the linear continuous projection operator Q : Z ~ Z can be defined by 

m m ~j  

Qy = Ajrlj Aj  y(s) ds, 
j = l  

and the / inear  operator Kp : Im L ~ dom L N Ker P can be written by 

L g p y  = y(s)  ds. 
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1310 B. LIu 

m In fact, if (2.2) has a solution x(t) such t h a t  Ej----I Ajx(y j )  = 0, then from (2.2), we have 

x(t) = x(O) + y(s) ds. 

In view of condition (H), we obtain 

0 = Ajx(nj)  = Aj  y(s) ds, 
j = l  j = l  

tha t  is, 

m ]0, j y ( s ) d s  = 0. 
j = l  

On the other hand, since (2.3) holds, we can set 

x(t) = d +  y(s) ds, 

m where d e R n is arbitrary. Hence, x(t) is a solution of (2.2) and ~-~j=l Ajx(~j)  = 0. Therefore, 
(2.1) holds. 

For y E Z, consider the projection 

j0 
m r/j 

Qy = Aj~j E Aj y(s)ds.  
j=l j=l 

Let Yl = y - Qy, then yl E Im L (since v " ~  A. f , J  z.~j=l J Jo yl(s) ds = 0). Hence, Z = I m L  + R n, since 
Im L n R ~ = {0}. Thus, 

dim Ker L = dim R ~ = co dim Im L = n. 

Hence, L is a Fredholm operator  of index zero. 

Let P : Y ~ Y be defined by 

Px = x(o). 

Then the generalized inverse operator  Kp : Im  L ~ dora L N Ker P of L can be wri t ten by 

K~y = y(s) as. 

In fact, for y E I m  L, we have 

(LKp)y(t) = [(Kpy)(t)]' = y(t), 

and for x E dom L n Ker P,  we know 

(KpL)x(t) = Kpx'(t) = x'(s) ds = x(t) - x(O). 

Since x E dora L N Ker P,  x(0) = 0, we have 

(gpL)x( t )  = x(t). 

This shows Kp = (L[domLnKerP) -1. Furthermore,  it is clear tha t  

[IKpYH~ <- [[YI]I, for all y e I m L .  

This completes the proof  of Lemma 2.1. 
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Existence and Uniqueness of Solutions 1311 

THEQREM 2.1. Let (H) hold. Let  f : [0, 1] x R ~ ~ R "~ be a Carathdodory function, and assume 
the following. 

(H1) There exist functions a, b, r • LI([0, 1], R ), and constant 0 • [0, 1) such that for a / /x  • R ~, 
t •  [o,11, 

Ill(t, x)ll _< a(t)llxll + b(t)llzll ° + fit) .  (2.4) 

(H2) There exists a constant M > 0 such that, for x • domL,  ff there exist some io • 
{1, 2 , . . . ,  n} such that Ix,o(t)l > M for all t • [0, 1], then 

fo Aj  [f(s, x(s))  + e(s)] ds # O. (2.5) 
j----1 

(Ha) There exists a constant M* > 0 such that for any d = ( d l , . . . ,  d,~) T • R '~, ff ]ldll > M*, 
then either 

d T .  Ajr/~ E A¢ 'Tj 
j = l  

[f(s, d) + e(s)] ds < 0 (2.6) 

o r  

/0 
?Tt 

n3 If(s, d) + e(s)] ds > O. d r • Ajr/j ~ Aj (2.7) 
j = l  

Then, for every e • LI([0,1],Rn),  B V P  (1.1),(1.2) has at least one solution x • C([0,1],R n) 

provided 
1 

Ilalll < 3" 

PROOF. Set 
~'~1 ---- {X e d o m L  \ K e r L  : Lx  = ~ N x  for some )~ • [0, 1]}. 

Then,  for x • ~1, Lx  = ANx,  so A ~ 0, and N x  • I m L  = KerQ.  Therefore, 

m 

E Aj ~o '~ [f(s, x(s))] ds = O. 
j = l  

By (H2), there exists ti E [0,1] such tha t  Ix~(t~)l < M for all i E { 1 , 2 , . . . , n } .  Since xi(0) = 
x,( t , )  - fo' x~(t) dr, this implies [xi(0)l < M + IIx~lll, and thus 

I1~(o)11 <_ M + I1:¢11. (2.s) 

Again, 

and from (2.8),(2.9), we obtain 

IIx'lll = IILxlll  <__ IINxl l l ,  

IIx(O)ll <~ M + tlNxlll. 

Also for x E 121, x E d o m L  \ KerL,  then ( I  - P ) x  C do taL  n K e r P ,  L P x  = O. 
Lemma 2.1, we have 

(2.9) 

(2.1o) 

Applying 

I1( / -  P)x l l~  = IIKpL(I - P)xlI~ ~ ILL(/-  P)xll l  = IILxlll ~ IINxlll. (2.11) 

From (2.10),(2.11), we obtain 

[Ixl[e¢ < liPxi]oo + H(I - P)x]loo = []x(0)H + I[(I - P)xl]~  < 2[INXlll + M. (2.12) 
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Ir~ view of (2.4) and (2.12), we have 

and thus, 

B. LIU 

I lx l l~  < 2 [11~11111=11~ + Ilblllllxll°~ + II,'111 ÷ I1~111] ÷ M, 

I lx l l~  <- 1 - 211all~ 1 - 211a111 Ilrll l  + II~llx + • 

Since 0 E [0, 1), from above the inequality, there exists M1 > 0 such that  

Therefore, ftl  is bounded. 
Let 

Ilxll~ <_ M1. 

f/2 = {x E Ker L : N x  e Im L}. 

For x E f/2, x E KerL  = {x E domE : x = d, d E Rn}, and QNx = O, thus, 

m 

Aj ]_'u [f(s, d) + e(s)] ds = O, E 
j = l  JO 

and  hence, Ildll -< M. Otherwise, if Ildll > M, from (H2), we ob ta in  

m P 

/ 0~ [f(s, d) + e(s)] ds E A~ O, 
j = l  J 0  

which is a contradiction. Therefore, ft2 is bounded. 
Next, according to condition (Ha), for any d e R n, if Ildll > M*, then either (2.6) or (2.7) 

holds. 
If (2.6) holds, set 

f/3 = {x e Ker L : -A  A x + (1 -- )~)QNx = 0, A e [0, 1]}, 

where A : K e r L  ~ I m Q  is the linear isomorphism given by A(d) = d, Yd e R ~. 
Since any x = do E f/a, we see 

m m ~j 

Ado = (1 - A). Afl}j Aj [f(s, do) + e(s)] ds. 
j = l  

If A = 1, then do = 0. Otherwise, if Ildoll > M*, in view of (2.6), we have 

rn r/j 

do T (1 - )~). A~?~ A~ [f(s, do) + e(s)] ds < O, 
j = l  

which contradicts ,kdo T- do > 0. Therefore, f/s C {x E KerE  : llzll~ < M*} is bounded. 
If (2.7) holds, then set 

f~3 = {x E KerL  : ), A x + (1 - )~)QNx = 0, A E [0,1]} 

(here A is the same as the above definition). Similar to the above argument, we see that  f/3 is 
bounded too. 

In the following, we shall prove that  all conditions of Theorem A are satisfied. Let ~2 be a 
3 bounded open subset of Y such that  Ui=l l~ C f/. By using the Ascoli-Arz~la theorem, we can 

prove that  Kp(I - Q)N : ~ ---* Y is compact, thus N is L-compact on ~. Then by the above 
argument we have: 

(i) Ex ~ ,kNxfor  every (x, A) E [(domE \ Z e r L  n Of/)] x (0, 1); 
(ii) N x  ~ Im L for x E Ker L M Of/. 
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Existence and Uniqueness of Solutions 1313 

At last we will prove that  (iii) of Theorem A is satisfied. Let H(x,  A) = ±A A x + (1 - A)QNx.  
According to the above argument, we know 

H(x,  A) # 0, 

Thus, by the homotopy property of degree, 

for x • 0~t M Ker L. 

deg(QNlKer L, fl (7 Ker L, 0) = deg(H(. ,  0), f~ N Ker L, 0) 

= deg(H(.,  1), f~ N Ker L, 0) 

= deg(±A, ~ N Ker L, 0) # 0. 

By Theorem A, Lx  = N x  has at least one solution in d o m L  M ~,  so that  BVP (1.1),(1.2) has a 
solution in C([0, 1], Rn). This completes the proof. 

In the following, under stronger hypotheses than what we had before, we are able to prove 
uniqueness of solutions to BVP (1.1),(1.2). 

THEOREM 2.2. Suppose that conditions (H1) and (1-12) in Theorem 2.1 are replaced by the 
following conditions, respectively. 

([-I1) There exists functions a • LI([0, 1],R) such that for all x , y  • R n, t • [0, 1], 

I l f ( t , x )  - f ( t ,  y)ll _< a(t)ll~ - yll. 

(n~) For ~ • dotaL,  ii' there exist some io • {1, 2 , . . . , , ~ }  such that Ix,o(t)l > o ~o~- all t • [0,1], 
then 

m 

Aj /_0' [f(s, x(s)) + e(s)] ds # 
I" 

E O. 
j = l  JO 

Then, foreverye • LI([0, 1], R~), B V P  (1.1),(1.2) hasa  unique solution x 6 C([0, 1],R ~) provided 

1 
flail1 < ~. 

PROOF. The existence of a solution of BVP (1.1),(1.2) follows immediately from Theorem 2.1 
by setting b(t) - O, r(t) = I[/(t, 0)H, t • [0, 1]. 

Now suppose that  x l , x2  • C([0, 1], R n) are two solutions of BVP (1.1),(1.2), and write x = 
xl - x2. Then we get 

w'(t) = f i t ,  xl(t))  -- f i t ,  x2(t)), 

a j x ( , j )  = 0. 
j = l  

Let Y, Z, Q, P, L be as in the proof of Theorem 2.1, and 

(2.13) 

(2.14) 

Nx( t )  = f ( t ,  xl( t))  - f ( t ,  x2(t)). 

Now, assuming that x # 0, in view of Lx  = N x ,  we have N x  6 Im L = Ker Q, and hence, 

rn A r ~ i  
' JO [ f (8 '  XI(S))  -- f ( t ,  x 2 ( s ) ) ] d 8 : 0 .  

From (I=I2), there exists t, 6 [0, !] such that  xi(ti) = 0 for all i • {1, 2 , . . . ,  n}. 
x,(O) = x,(t i)  - fo' x~(t) dt implies 

IIx(O)ll __ Ilgll~ 

Furthermore, 

(2.15) 
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an4 
I[x'lli = [[Lx[[t <_ [IYxl[i. (2.16) 

Hence, from (2.15),(2.16), we obtain 

IIx(0)ll ___ I lYxll l .  (2.17) 

Also, because x E dora L \ Ker L, we know (I - P)x  E dora L O Ker P ,  and LPx  = 0. From 
Lemma 2.1, we have 

II(I - P ) x [ l ~  = IIKpZ(I - P)xll  ~ < ILL( / -  P)x l l l  = IILxllx < IINxllx. (2.18) 

Then (2.17),(2.18) yield 

Ilxll~ ___ llPxll~¢ + I1(I - P ) x l l ~  = IIx(O)ll + I1(I - P)xI[~ <_ 211Yxlll. (2.19) 

In view of (I:I1) and (2.19), we have 

Ilxll~ <__ 21lalllllzll~. 

By our assumption, the coefficient on the right is less than 1, which is a contradiction. Thus, 
z(t) = 0 for t E [0, 11, so that  xi = x2. 

This completes the proof of the theorem. 

Finally, in order to illustrate our result, we consider one example. 

EXAMPLE 2.1. Consider the boundary value problems 

1 (1 + cos2 x2) + 3sin(xl)  1/3 + cos2 t + 1, • ~ = ~ 1  
(2.20) 

1 ( 1 +  e_s,.~xl) x~ = ~x2 + 3sin(x2) 1/3 + sin z t + 1, 

(2.21) 
--3xi(O) -- 2x2(O) jr 2Xl ( 1 )  jr x2 ( 1 )  jr Xl(1) jr x2(1) = O. 

Let r h = 0, r}2 = 1/2, r/3 = 1, f l  (t, x) = (1/6)xi (1 + cos 2 x2) + 3 sin(xi) 1/3, f2 (t, x) = (1/6)x2 (1 + 
e -sin2zl) Jr 3sin(x2) i/3, ei(t) = cos2t + 1, e2(t) = sin2t Jr 1, f ( t , x )  = ( f i ( t , x ) , f2 ( t , x ) )  T, 
e(t) = (el(t), e2(t)) T, and (2.21) can be written 

A1.  (Xl(?~l), x2(~71)) T Jr A2" (Xl(V2), X2(~]2)) T jr A3-(Xl(~3),X2(?}3)) T = 0. 

Hence, 

3 
A1 jr A2 + A3 = 0 and det(Air/i jr A2~}2 jr A3r/3) = ~ ¢ 0, 

I 113, [0, 1]. IIf(t,x)ll < ~11~11 + 311xll for an t e 

Taking a = 1/3, then [[a[[1 = 1/3 < 1/2. Again, 

jon#[f(s,x(s)) +e(s)lds = [fl(s, xCs)) +el(s)lds, 2fl(s,x(s)) 
j=l  

+ ~f2(~,~(s)) + 2el(~) + ~e2(s) a~ 

= ( P t ( ~ l , x 2 , e l , ~ . ) , N ( ~ l , ~ 2 ,  ~ 1 , ~ 2 ) )  r , 

(2.22) 
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Existence and Uniqueness of Solutions 1315 

where 

~0 
1 

Fl(Xl, x2, el, e2) ---- [fl ($, x(8)) -~- el(s)] ds, 

F~(xi,~2, et,e2) = 2f~(s, ~(s)) + gl~(s,~(s)) + 2e~(s) + ~e~.(s) as. 

Now take M = 31, for any x e C([0, I ] ,R 2) ~ LI([0, 1],R2), and assume [xi(t)l > M holds for 
any t e [0, 1]. Since Xl is continuous, then either Xl(t) > M or xl(t) < - M  hold any t E [0, 1]. 

If xl(t) > M holds for any t e [0, 1], then 

~0 
1 

f l (Xl ,  x2, el, e2) = [fl (s, x(s)) + el(s)] ds 

] = g x l ( s )  (1 + cos 2 z2(s) )  + 3 s in (z i ( s ) )  1/3 + cos 2 s + 1 ds 

i1( 1 ) >_ M - 2  ds>O. 

If xl(t) < - M  holds for any t E [0, 1], then 

~0 
1 

Fl(Xl, x2, el, e2) : Ill(8, x(8)) -]- el(S)] ds 

/01[ 1 ] = gxl(s)  (1 + cos 2 X2(8)) "4- 3 sin(xl(s)) 1/3 + cos 2 s + 1 ds 

~ 1 (  1 ) 
<_ - M + 5  ds<O. 

Hence, 
3 

Aj ~o °~ If(s, x(s)) + e(s)] ds • O, 
j--=l 

and condition (H2) holds. Taking M* = 61, for any d E 
]ldll = Idll > M* or Ildll = Id21 > M*. 

If Ildll = Idl] > M*, then Idl] > ]d21 and 

R 2, when Ildi[ > M*, then either 

3 3 Uj 
d T. Aj~/j Aj [f(s, d) -4- e(s)] ds 

(i1 
= (dl, d2) (fl(s, d) + el(s)) ds, (f2(s, d) W e2(s)) ds 

~01 [ j" 2 d2)_~_3dlsin(dl)l/3_~ (cos28_~X) dl ----- ~d 1 (l "-~ cos 2 

1 2 (14- e-Sin2 (cos2 s 1) d2] + ~d 2 41) + 3d2 sin(d2) U3 + + ds 

] > g d l - l O l d l l  ds>O. 
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1316 B. LIu 

If IIdH = Id21 > M*, then Id21 >__ Idll and 

d x. Aj~j ~ Aj ~ [f(s, d) + e(s)] ds 
j=l  

(f f = (dl, d2) (fl(S,  d) + el(s)) ds, (f2(s, d) + e2(s)) ds 

f[l . 
= gd 1 (1 + cos 2 d2) + 3dl sin(d1) 1/3 + (cos 2 s + 1) dl 

> gd  2-101d21 ds>O. 

So condition (H3) holds. Hence, from Theorem 2.1, BVP (2.20),(2.21) has at least one solution 
x e c ( [ 0 , 1 ] ,  
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