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Abstract—In this paper, we give existence and uniqueness results for solutions of multipoint
boundary value problems of the form

o = f(t.z(t)) +e(t), te€(01),
m
3" Ajz(n;) =0,
i=1
where f : [0,1] X R* — R™ is a Carathéodory function, A;s (j = 1,2,...,m) are constant square
matrices of order n, 0 <M <12 <-+- < Pm—1 < Pm < 1, and e(t) € L1([0, 1], R*). The existence of

solutions is proven by the coincidence degree theory. As an application, we also give one example to
demonstrate our results. © 2004 Elsevier Ltd. All rights reserved.

Keywords—First-order system, Existence and uniqueness of solution, Multipoint boundary value
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1. INTRODUCTION

We are interested in the existence of solutions of the following multipoint boundary value problem
(BVP):

' = f(t,z(t)) +e(t), te(0,1), (1.1)
Y- Aja(m;) =0, (1.2)
i=1
where f : [0,1] x R® — R™ is a Carathéodory function, A;s (j = 1,2,...,m) are constant square

matrices of order n, 0 <M < M2 < +-+ < Nm—1 < Mm < 1, and e(t) € L([0, 1], R™) are given.
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When m = 3 and e(t) = 0, the above BVP was very recently studied by Ma [1] using the
Leray-Schauder continuation theorem. However, the existence results in [1] mainly depend upon
a restrictive condition, i.e.,

det(Al + Az + A3) # 0.

It is therefore natural to ask whether similar existence results can be obtained if det(A; + Az +
Az) = 0. So in this paper, we will derive existence results for BVP (1.1),(1.2) when }:;'_'__1 A; =0,
which gives a partial answer to the questions stated above. The key tool in our approach is based
upon the coincidence degree theory of Mawhin [2,3].

We remark that there are a number of studies concerned with the existence of solutions to
second-order multipoint boundary value problems; see, for example, [4-8] and references therein.
However, to our knowledge, few papers can be found dealing with multipoint boundary value
problems of first-order systems except for the works due to Ma [1] and Murty and Sivasun-
daram [9]. In [9], Murty and Sivasundaram studied the existence and uniqueness of solutions to
BVP (1.1),(1.2) (when m = 3, e(t) = 0) using the Banach contraction mapping principle, and
the key conditions in [9] depend on the fundamental matrix of the variational system of (1.1).
This requires f to be a continuously differentiable function.

Now, we will briefly recall some notation and an abstract existences result.

Let Y, Z be real Banach spaces, L : domL C Y — Z be a Fredholm map of index zero and
P:Y >Y,Q:Z — Z be continuous projectors such that Im P = Ker L, KerQ = Im L and
Y =KerL@®KerP, Z=ImL&ImQ. It follows that L|gom rrKerp : dom L NKer P — Im L is
invertible. We denote the inverse of that map by K,. If Q is an open bounded subset of Y such
that dom L N Q # §, the map N : Y — Z will be called L-compact on Q if QN () is bounded
and K,(I — Q)N :Q — Y is compact.

The theorem we use is Theorem 2.4 of [2] or Theorem IV.13 of [3].

THEOREM A. Let L be a Fredholm operator of index zero and let N be L-compact on ). Assume
that the following conditions are satisfied:
(i) Lz # ANz for every (z, ) € [(dom L \ Ker LN Q)] x (0,1);
(i) Nz ¢ Im L for every x € Ker LN 8%;
(iii) deg(QN|kerL, 2NKer L,0) # 0, where Q : Z — Z is a projection as above with Im L =
Ker@.
Then the equation Lz = Nz has at least one solution in dom L N .

Throughout this paper, the function g : {0,1] x R — R" is a Carathéodory function, which
means

(i) g(t,-) is continuous on R™ for a.e. t € [0,1],
(ii) g(-,z) is Lebesgue measurable on [0, 1], for each z € R™,
(iii) for each p > 0, there exists an h, € L1([0,1], R*) such that

|fi(t,z)] < (ho)i(2), forae. te[0,1], |z||<p, and i=1,...,n.

As usual, the notation we will use herein is mostly standard. We denote the n x n identity
matrix by E, the Banach space of all constant square matrices of order n by M,,x,, with the norm

1Bl =  Jax 1B:,]-

For a = (a1,...,a,)" € R, define

led) = max ol
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The corresponding L!-norm in L}([0,1], R") is defined by

1
loll = max [ ledo) et
The L*®-norm in C([0, 1], R™) is

lzlleo = max Sup |z:()]-

Furthermore, in this paper, we always assume the following:
(H) 371, A; =0 and det(372, Ajm;) # 0.

2. MAIN RESULTS

In this section, we shall prove the existence and uniqueness results for solutions of BVP
(1.1),(1.2).

Let Y = C(|0,1], R"), Z = L'([0,1], R™). Define L to be the linear operator from domL C Y
to Z with

domIL = {:z eY: ZAjw(nj) =0, ' € L* ([0, 1],R“)} ,

i=1

and Lz = z', € dom L. We define N : Y — Z by setting
Nz = f(t,z(t)) +e(t), tel0,1],

then BVP (1.1),(1.2) can be written
Lz = Nz.

LEMMA 2.1. Let (H) hold, then L : domL C Y — Z is a Fredholm operator of index zero.
Furthermore, the linear continuous projection operator Q : Z — Z can be defined by

Qy=(i/1jnj) ZA / y(s) ds,

and the linear operator K, : Im L — dom L N Ker P can be written by

t
Kpy = /0 y(s)ds.

Also,
1 Kpylloo < Nyll1s for ally € Im L.

PROOF. It is clear that Ker L = {z e dom L : z = d, d € R"}. We now show that

ImL={yeZ:iA,—/njy(s)ds=0}. (2.1)
=1 70

Since the problem

=y (2.2)
has a solution z(t), that satisfies 37", A;z(n;) = 0 if and only if
m 7
3 4 / y(s)ds =0. (2.3)
0

Jj=1
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In fact, if (2.2) has a solution x(t) such that Y77, A;x(n;) = 0, then from (2.2), we have

z(t) = z(0) +/0 y(s) ds.

In view of condition (H), we obtain

0=2 Ajz(n) =) 4 /onj y(s) ds,

i=1 i=1

that is,
ZAj/ y(s)ds = 0.
j=t 70

On the other hand, since (2.3) holds, we can set

o) =d+ [ yls)as,
0

where d € R" is arbitrary. Hence, z(t) is a solution of (2.2) and 3772 | A;z(n;) = 0. Therefore,
(2.1) holds.

For y € Z, consider the projection

1
Qy= (E Aﬂb’) > :A,-/ y(s) ds.
=1 =1 70

Let y1 =y — Qy, then y; € Im L (since 37", 4; I y1(s)ds = 0). Hence, Z =Im L + R", since
Im L n R* = {0}. Thus,

dimKer L =dim R" = codimIm L = n.

Hence, L is a Fredholm operator of index zero.
Let P:Y — Y be defined by
Pz = z(0).

Then the generalized inverse operator Kp : Im L — dom L N Ker P of L can be written by

Kpy = /0 t y(s)ds.
In fact, for y € Im L, we have

(LEp)y(t) = [(Kp) ()] = y(t),
and for £ € dom L N Ker P, we know
(KpL)z(t) = Kp2'(t) = /Ota:’(s) ds = z(t) — =(0).

Since = € dom L N Ker P, z{0) = 0, we have

(KpL)x(t) = z(t).
This shows K, = (L|dom Lnker p) . Furthermore, it is clear that

1 Kpulloo < llwll1s for all y e Im L.

This completes the proof of Lemma 2.1.
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THEQREM 2.1. Let (H) hold. Let f : [0,1] x R™ — R™ be a Carathéodory function, and assume
the following.

(H;) There exist functions a,b,r € L'([0,1], R), and constant 8 € [0, 1) such that for all z € R",
t e [0,1],
17, 2)ll < a@®) ]| + bE)|2]|° + (). (2.4)
(Hz) There exists a constant M > 0 such that, for z € dom L, if there exist some iy €
{1,2,...,n} such that |z;,(t)| > M for allt € [0, 1], then

Sy [ 10(6) + (o)l ds £ 0. (25)
j=1

(Hs) There exists a constant M* > 0 such that for any d = (ds,...,d,)T € R™, if ||d|| > M*,
then either

=

(ZA,W,) }r:n:A/ [f(s,d) + e(s)] ds < 0 (2.6)
j=1 j

or

m

T. (ZA,-nj) ZA / [f(s,d) + e(s)] ds > 0. (2.7)

j=1
Then, for every e € L*([0,1], R*), BVP (1.1),(1.2) has at least one solution z € C([0,1], R")
provided

1
ol < 3-

PROOF. Set
= {z € dom L\ KerL: Lz = ANz for some X € [0,1]}.

Then, for z € Q,, Lt = ANz, s0 A #0, and Nz € Im L = Ker Q. Therefore,

ZA / (s,z(s))]ds =

By (Ha2), there exists t; € [0,1] such that |z;(t;)] < M for all ¢ € {1,2,...,n}. Since z;(0) =
zi(t;) — t‘ x}(t) dt, this implies |z;(0)] < M + ||z}||1, and thus

(0| < M + [|z'||1. (2.8)
Again,
'l = | L=l < [[N=]s, (2.9)
and from (2.8),(2.9), we obtain
Iz ()]l < M + | Nay. (2.10)

Also for ¢ € Oy, z € domL \ Ker L, then (I — P)x € domL NKer P, LPx = 0. Applying
Lemma 2.1, we have

I = P)zlleo = | EpL(I = P)zll, < [|IL(I = P)fly = || L]y < [|Nz]s. (2.11)
From (2.10),(2.11), we obtain

zlloo < I1Plloo + (I = P)zlloo = 2(0)]] + [(I — P)zlleo < 2(| N2l + M. (2.12)
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In view of (2.4) and (2.12), we have

Izlloo <2 [llall1lllloo + IBll1lzli% + lIll2 + llella] + M,

and thus,

2|| ]|1 o , 2 M
lzlleo < =5y gm 17lloo rlle+ flells + +-

Since 4 € [0,1), from above the mequahty, there exists M; > 0 such that
[zlloo < M.

Therefore, §2; is bounded.
Let

Qo={re€KerL: NzelmlL}.
ForzeQy,z€KerL ={z €domL:z=d, de R"}, and QNz = 0, thus,

ZA/ [f(s,d) + e(s)]ds =0,

and hence, ||d|| < M. Otherwise, if |d|| > M, from (H;), we obtain

;AJ' /0 [f(s,d) +e(s)]ds # 0,

which is a contradiction. Therefore, £, is bounded.

Next, according to condition (Hs), for any d € R", if ||d|| > M*, then either (2.6) or (2.7)
holds.

If (2.6) holds, set

Q={ze€KerL: -AAz+(1-XNQNz=0, X €[0,1]},

where A : Ker L — Im Q is the linear isomorphism given by A(d) =d, Vd € R™.
Since any z = dg € (13, we see

-1
Ao =(1-1)- (ZA,n,) ZA / [£(s,do) + e(s)] ds.

j=1

If A =1, then do = 0. Otherwise, if ||do|| > M*, in view of (2.6), we have

-1
dg (1= X)- (Z Aﬂ?j) > 4 /”] [f (s, do) + e(s)] ds <0,
j=1 j=1 0

which contradicts Ad] - dp > 0. Therefore, Q3 C {x € Ker L : ||z||ooc < M*} is bounded.
If (2.7) holds, then set

Q={zcKerL: AAz+(1-N)QNz=0, Ae0,1]}

{here A is the same as the above definition). Similar to the above argument, we see that Qg is
bounded too.

In the following, we shall prove that all conditions of Theorem A are satisfied. Let Q be a
bounded open subset of Y such that U?=1 Q; C Q. By using the Ascoli-Arzéla theorem, we can
prove that K,(I — Q)N : Q@ — Y is compact, thus N is L-compact on Q. Then by the above
argument we have:

(i) Lz # ANz for every (z,A) € [(dom L \ Ker L N 8Q)] x (0,1);

(ii) Nz ¢ Im L for z € Ker LN 992
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At last we will prove that (iii) of Theorem A is satisfied. Let H(z,A\) = +A Az + (1 — \)QNz.
According to the above argument, we know

H(z,)\) #0, for £ € 00 N Ker L.
Thus, by the homotopy property of degree,

deg(QN|ker L, RN Ker L,0) = deg(H(-,0),2 N Ker L, 0)
= deg(H(-,1),QNKer L,0)
= deg(+A, QN Ker L,0) # 0.

By Theorem A, Lz = Nz has at least one solution in dom L N {2, so that BVP (1.1),(1.2) has a
solution in C(|0, 1], R™). This completes the proof.

In the following, under stronger hypotheses than what we had before, we are able to prove
uniqueness of solutions to BVP (1.1),(1.2).

THEOREM 2.2. Suppose that conditions (H;) and (Hy) in Theorem 2.1 are replaced by the
following conditions, respectively.

(H,) There exists functions a € L'([0, 1], R) such that for all z,y € R", t € [0,1],

£t 2) — £, 9)l < a(t)]lz — -

(Hz) For z € dom L, if there exist some ig € {1,2,...,n} such that |z;,(t)] > 0 for all t € [0,1],
then

m n;
S 4 /0 [7(s,2(s)) + e(s)] ds 0.
j=1
Then, for every e € L*([0,1], R™), BVP (1.1),(1.2) has a unique solution z € C([0, 1], R*) provided

1
Jallx < 3.
Proor. The existence of a solution of BVP (1.1),(1.2) follows immediately from Theorem 2.1
by setting b(t) = 0,r(¢) = £t O), t€ 0,1
Now suppose that z1,z2 € C([0,1], R") are two solutions of BVP (1.1),(1.2), and write x =
z1 — z9. Then we get

' (t) = f(t,z1(t)) — F(t, 22(t)), (2.13)
3" Aza(n;) =0. (2.14)
g=1

Let Y, Z, Q, P, L be as in the proof of Theorem 2.1, and
Nz(t) = f(t, z1(t)) — (£, z2(2))-
Now, assuming that = # 0, in view of Lz = Nz, we have Nz € Im L = Ker Q, and hence,

g*‘f [ tte,m6) - st zs(opis =o.

From (H,), there exists t; € [0,1] such that z;(t;) = 0 for all 4 € {1,2,...,n}. Furthermore,
z;(0) = z;(t;) — foti z}(t) dt implies _
@) < ll="llx (2.15)
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and

z'lls = | Lzlly < [|Nz]l:. (2.16)
Hence, from (2.15),(2.16), we obtain
()| < || Nz, (2.17)

Also, because z € dom L \ Ker L, we know (I — P)z € dom L N Ker P, and LPz = 0. From
Lemma 2.1, we have

I — P)zlloo = | KpL{I — P)z|, < |L(I = P)z||y = || Lzl < [|Nz|:. (2.18)
Then (2.17),(2.18) yield
lzlleo < IPzlloo + |1 — P)zlloo = [l2(0)]| + I — P)zlloo < 2[|Nz||;. (2.19)
In view of (H;) and (2.19), we have
Izllo < 2llall1]lioo-

By our assumption, the coefficient on the right is less than 1, which is a contradiction. Thus,
z(t) =0 for t € [0, 1], so that z; = z.

This completes the proof of the theorem.

Finally, in order to illustrate our result, we consider one example.

EXAMPLE 2.1. Consider the boundary value problems

1
z) = Exl (1 + cos? :L‘g) + 3sin(:z:1)1/3 +cos’t+1,
(2.20)

zh = %.’L‘g (1 + g~ sin’ ‘"‘1) + 3sin(z2)Y/3 + sin?t + 1,

3 1 1
@ 4z (2) + Eey =0,
2" 1(2) 2 (2.21)

—3z1(0) — 225(0) + 2z, (%) +z2 (%) +z1(1) + 73(1) = 0.

Let 73 =0, 12 = 1/2, 33 = 1, fi(t,z) = (1/6)z1(1 +cos? z2) +3sin(z1)Y/3, fa(t,z) = (1/6)z2(1+
e ) + 3sin(z)V°, er(t) = o't + 1, ex(t) = sin’t + 1, f(t,2) = (fult:2), folt,2)T,
e(t) = (e1(t),e2(t))T, and (2.21) can be written
A - (”31(771),1”2(771))T + Az - (ml(ﬂz),wz(ﬂz))T + Az - (1'31(773),952(7)3))T =0
Hence,
3
A1 +A2+A3=0 and det(Aym + Agmy + Asms) = 3 #0,
1
152 < gl + 3|lz|'/3,  forallteo,1].

Taking a = 1/3, then ||al|; = 1/3 < 1/2. Again,

3 N3 1 1
]Z_;Aj/o [f(s,2(s)) + e(s)] ds = (/0 [fl(S,:E(s))+e1(s)]ds,/o [2fl(s,x(s))

T (2.22)
+ 310,20 +21(6) + ea(s)] )

= (Fi(z1,Z2,€1,€2), Fa(z1, 22, €1, €3)) ",
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there

1
Fi(z1,z2,e1,e3) = /0 [fi(s,z(s)) + e1(s)] ds,

Fy(z1,29,€1,€3) = /0 [2f1(s,x(s)) + gfz(s,:c(s)) + 2e;3(s) + geg(s) ds.

Now take M = 31, for any =z € C([0,1], R%) n L!([0, 1], R?), and assume |z;(t)] > M holds for
any t € [0,1]. Since z; is continuous, then either z,(t) > M or z1(t) < —M hold any t € [0,1].
If 21(t) > M holds for any ¢ € [0, 1}, then

1
F1($1,932,€1,62)=/0 [f1(s,2(s)) + ex(s)] ds
= /1 [%xl(s) (1 + cos® z5(s)) + 3sin(z1(s))Y/3 + cos® s + 1| ds
11
2/0 <€M—2) ds > 0.

If z1(t) < —M holds for any ¢ € [0,1], then

1
Fi(z1, 23,01, 02) = / [F1(5,3(5)) + ex(s)) ds

1
- /0 [%xl(s) (1+ cos? za(s)) + 3sin(z1(s))/* + cos” s + 1] ds

1
_<_/ (—1M+5) ds < 0.
0 6

Hence,
3 i
; A; /0 [£(s,2(s)) + e(s)] ds # 0,

and condition (Hz) holds. Taking M* = 61, for any d € R?, when ||d| > M*, then either
lldll = |d1| > M* or ||d|| = |dz| > M*.
If [|d|| = |di| > M*, then |d1| > |da| and

3 s ur
dT. (ZAjn,-) >4, / [f(s,d) + e(s)] ds
=1 0

=1
T

1 : 1
= (dr, d3) ( / (Fi(s,d) + ex(s)) ds, / (Fals,d) + ea(s)) ds)
0 0
1
= / [%df (1 + cos? dp) + 3d, sin(d1)Y/® + (cos?s + 1) d;
0
+ %dg (1 +em s’ dl) + 3d2 sin(dp) /3 + (cos? s + 1) dz] ds

1
> / [%d%-mpiﬂ] ds > 0.
0
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If ||d|| = |d2| > M?*, then |da} > |d1| and

-1

3 3 7
(S am) T4 [ D) +eolds
i=1 j=1 0

1 1 T
= (d1,d2) (/(; (f1(s,d) + e1(s)) ds,/0 (fa(s,d) + e2(s)) ds)

1
= / %d% (1+ cos® da) + 3dy sin(dy)/® + (cos® s + 1) d
o L

+ %dg (1 + e dl) + 3dy sin(dp)Y/3 + (cos®s+1) dz] ds

1
>/

So condition (Hjz) holds. Hence, from Theorem 2.1, BVP (2.20),(2.21) has at least one solution
z € C([0,1], R?).

%dg - 10|d2|] ds > 0.
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