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ABSTRACT
Gabor filters possess the optimal localization properties in
both spatial and frequency domain, and they have been suc-
cessfully used in many applications. But how to design a
set of befitting Gabor filters for a specific application has
maybe puzzled many users for a long time. In this paper,
we purpose designing a common set of Gabor filters – a
Gabor filter family to solve the problem. The Gabor fil-
ters in the family are well combined to capture the whole
frequency spectrum in all directions. And we can extract
many meaningful features using the Gabor filter family.
Experimental results in textures and characters demonstrate
these features commendably expressing the local informa-
tion with the different frequencies and orientations in the
image. The Gabor filter family designed by us can be also
used in some other applications.
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1 Introduction

In recent years, Gabor filters have been successfully
used in many applications, such as texture segmen-
tation/classification [3,4,11], target detection, character
recognition [7,8], fingerprint recognition [5,9], face recog-
nition [6,10], fractal dimension management, document
analysis, edge detection [2], image analysis and compres-
sion [1]. Gabor filters have received considerable attention,
because they possess the optimal localization properties in
both spatial and frequency domain.

Designing some befitting Gabor filters for a particu-
lar processing task and reducing the computation time are
the common difficulties, and they should be well solved
in all these applications. In texture processing, some au-
thors consider the design of a single Gabor filter to seg-
ment a two-texture image. The output of a Gabor-filtered
texture is modeled well by a Rician distribution, and a mea-
sure of total output power is used to select the center fre-
quency of filter and to estimate the Rician statistics of the
Gabor- filtered image [3]. Other authors utilize the concept
of multi-resolution with parameter selection to do texture
analysis, and reduce the computation time by diminishing
the image size according to several different sets of param-

eters [4]. In image analysis and compression, Daugman
presented a three-layered neural network for transforming
two-dimensional discrete signals into ge- neralized non-
orthogonal 2-D Gabor representations for image analysis,
segmentation and compression. The Gabor filters used in
his paper are based on a biologically inspired log-polar en-
semble of dilations, rotations and translations of a single
underlying 2-D Gabor wavelet template. The neural net-
work is used for finding the optimal coefficients of Gabor
transform [1]. In edge detection, some authors investigate a
2-D Gabor odd filter-based detector, and the overall perfor-
mance of this detector is almost identical to that of the first
derivative of Gaussian [2]. But differing from them, we
purpose designing a common multi-resolution Gabor filter
family used to extract features from the images. In this pa-
per, two issues are mainly considered: one is to design a
preset common set of Gabor filters for these applications,
and we call them a Gabor filter family; the other is to ex-
tract features using the Gabor filter family from an image.
After the 1-D Gabor function had been proposed in 1946
by Gabor in his paper ”Theory of communication”, Daug-
man extended it to a 2-D Gabor filter and showed it provid-
ing simultaneous optimal resolution in both the space and
frequency domain. The Gabor filters defined in our paper
have the equivalent energy 1, and they are all derived from
a common basic Gabor filter by rotating and dilating. These
Gabor filters are well combined to cover over the whole 2-
D frequency domain. The features extracted using Gabor
filters represent the local information in the image. We can
take features from the amplitude or phase after convolving
the complex Gabor filters with the image. In this paper,
we give out four feature examples. In order to reduce the
computational complexity, we can choose the numbers of
Gabor filters (frequency number and orientation number),
features and convolving coefficients (decimation).

The remainder of this paper has four parts. In section
2, we give out the function definition of Gabor filter, and
discuss the parameters selection, and design three different
Gabor filter families. In section 3, four kinds of features ex-
tracted using a Gabor filter family are presented. In section
4, we do three experiments: experiment A shows the fea-
tures on the images consisting of different frequency con-
tents, experiments B and C show the features on texture and
character images. In the last section, we give an overview
to the features and the Gabor filter family.
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2 Designs for Gabor Filter Family

2.1 Gabor Filter Family

The general functional form of a 2-D Gabor filter family
can be specified in eq.(1) and eq.(2), in terms of spatial do-
main impulse response and its frequency domain response:

h(x, y; f, θ) =
1√

πσ1σ2
exp (− 1

2 (R2
1

σ2
1

+ R2
2

σ2
2
)) · exp (i(fxx + fyy))

(1)

whereR1 = x cos θ + y sin θ, R2 = −x sin θ + y cos θ,
σ1 = c1

f , σ2 = c2
f , fx = f cos θ, fy = f sin θ, c1 andc2

are two constants.
The coefficient

√
πσ1σ2 can guarantee that the ener-

gies of different Gabor filters in the family are all equivalent
to 1, i.e.‖h‖2 =

∫ ∫
hh∗dxdy = 1.

H(u, v; f, θ)
= 2

√
πσ1σ2 exp (− 1

2 (σ2
1(S1 − f)2 + σ2

2S2
2) (2)

whereS1 = u cos θ + v sin θ, andS2 = −u sin θ + v cos θ.
Gabor filters are spatial sinusoids localized by a Gaus-

sian window, and they are orientation and frequency sensi-
tive band pass filters. In eq.(1),x andy are the digital pixel
ordinates in the image. The parametersσ1 andσ2 are the
standard deviations of 2-D Gaussian envelope. The central
frequency of the pass band isf , and the spatial orientation
is θ.

If let σ1 = σ2 = σ, then eq.(1) and eq.(2) can be
simplified as eq.(3) and eq.(4)

h(x, y; f, θ)
= 1√

πσ
exp (−x2+y2

2σ2 ) · exp (i(fxx + fyy))
(3)

H(u, v; f, θ)
= 2

√
πσ exp (−σ2((u−fx)2+(v−fy)2)

2 ).
(4)

The complex Gabor filter comprises two components.

One is the real part: 1√
πσ1σ2

exp (− 1
2 (R2

1
σ2
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2
)) cos(f

R1), and the other is the imaginary part: 1√
πσ1σ2

exp (− 1
2 (R2

1
σ2
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+ R2
2

σ2
2
)) sin(fR2).

The real part is even symmetry, whereas the imag-
inary part is odd symmetry. For example, fig.1 shows the
real part and imaginary part of a Gabor filter, wheref = π

3 ,
θ = 0, andc1 = c2 = π.

The frequency response of another Gabor filter is
shown in fig.2, wheref = π

3 , θ = π
4 , andc1 = c2 = π.

The frequency center in the(u, v) plane is(fx, fy), where
fx = f cos θ = 0.7405 andfy = f sin θ = 0.7405. And
this indicates that a Gabor filter is a Gaussian filter shifted
to the position(fx, fy) in frequency.

2.2 Parameters Selection

There are four parametersf , θ, c1 andc2 to be selected.

Figure 1. The real part(left) and imaginary part(right) of a
Gabor filter.

Figure 2. The frequency response of a Gabor filter.

The central frequency of the pass bandf can be se-
lected from the interval[0, π]. A series of frequencies in
eq.(5) or eq.(6) is usually used

fk =
π

k + 1
, k = 0, 1, 2, · · · (5)

fk =
π

αk
, α > 1, k = 0, 1, 2, · · · . (6)

The sampling in the frequency interval of the former
is denser than the latter in general. And in the following of
this paper, eq.(6) is used.

The orientations can be distributed uniformly in the
interval[0, π], such as

θm =
mπ

M
, m = 0, 1, · · · ,M − 1. (7)

Generally, authors selectM = 4 in Chinese character
recognition, and this just meet the need of the stroke orien-
tations in Chinese characters. And we select the orientation
numberM = 8 in this paper.
Design 1: If σ1 = σ2 = σ(i.e. c1 = c2 = c), design an
optimal Gabor filter family.

First we’ll select the constantc in σ(fk) = c
fk

, then
we’ll choose theα in fk = π

αk .
The frequency response of every Gabor filter with the

parametersfk andθm is a 2-D Gauss function as shown
in fig.2, and the pass band width is2

σ(fk) . In the 2-D
frequency domain(u, v) ∈ ([−π, π], [−π, π]), The pass
band projection is a circle, whose center and diameter are
(fk cos θm, fk sin θm) and 2

σ(fk) . These circles and fre-
quency responses are shown in fig.3, respectively.

If fk is fixed andθm(m = 0, 1, · · · ,M − 1) is
changed, the centers of these circles make up of a bigger
circle with the center(0, 0) and the radiusfk. To make
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Figure 3. The pass bands and frequency responses of a
Gabor filter family, whereθm = mπ

8 , fk = π
1.4886k and

σ(fk) = 5.0930
fk

.

(a)

(b)

Figure 4. The real parts and imaginary parts of some mem-
bers in the above Gabor filter family: (a)different frequen-
cies fk = π

1.4886k , k = 0 ∼ 4, (b)different orientations
θm = mπ

8 ,m = 0 ∼ 7.

these circles be joined, parameters should satisfy eq.(8).

2M · 2
σ(fk)

≥ 2πfk (8)

If θm is fixed andfk(k = 0, 1, 2, · · ·) is changed, the
centers of these circles make up of a line. To make these
circles be joined, parameters should satisfy eq.(9).

1
σ(fk−1)

+
1

σ(fk)
≥ fk−1 − fk (9)

Thus all these circles are joined together and they can
cover over the frequency domain. From eq.(8), we can
educec ≤ 2M

π . HereM = 8, and we selectc = 16
π ≈

5.0930. From eq.(9), we can educeα ≤ c+1
c−1 , c > 1. Sub-

stituting c with 5.0930, we’ll getα ≤ 1.4886. And we
selectα = 1.4886.

Since all parameters have been selected, we show
some members of this Gabor filter family in fig.4. These
samples with different frequencies and orientations indi-
cate that each Gabor filter can be got from another one by
dilating and rotating. All of them have the same ridge and
valley numbers.
Design 2: If fk = π

2k , k = 0, 1, 2, · · ·(i.e. α = 2 in eq.(6)),
design an optimal Gabor filter family.

We only need to select the parametersc1 andc2.
Similarly, we can get the following two inequalities:

2M · 2
σ2(fk)

≥ 2πfk, (10)

and
1

σ1(fk−1)
+

1
σ1(fk)

≥ fk−1 − fk. (11)

From eq.(10), we can drawc2 ≤ 2M
π , and here we se-

lect c2 = 16
π ≈ 5.0930 which is same to design 1. From

eq.(11), we can drawc1 ≤ 3 and selectc1 = 3. Fig.5 and
fig.6 show this Gabor filter family and some of its mem-
bers.

Figure 5. Another Gabor filter family, whereθm = mπ
8 ,

fk = π
2k , σ1(fk) = 3

fk
andσ2(fk) = 5.0930

fk
.

(a)

(b)

Figure 6. Members with (a)different frequenciesfk =
π
2k , k = 0 ∼ 2, (b)different orientationsθm = mπ

8 , m =
0 ∼ 7.

Comparing the Gabor filter family in design-2 with
the one in design-1, we can find that the former can use the
fewer number Gabor filters than the latter to cover over the
same size area in the 2-D frequency domain.
Design 3: If fk = f0

2k , k = 0, 1, 2, · · ·, andf0 = 3π
4 , we

can obtainc1 = 3 andc2 = 5.0930 by the same method.
Thus we get the third Gabor filter family shown in fig.7.

Figure 7. The third Gabor filter family, whereθm = mπ
8 ,

fk = 3π
4·2k , σ1(fk) = 3

fk
andσ2(fk) = 5.0930

fk
.

We think the third Gabor filter family is more reason-
able than the second one. Because the pass bands of Gabor
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filters with f0, f1, f2, · · · are [π
2 , π], [π

4 , π
2 ], [π

8 , π
4 ], · · ·, re-

spectively. If the central frequencyf is cut down a half,
the bandwidth will be cut down a half, too. And the coeffi-
cients of the Gabor filter decomposition can be done with a
radix-2 decimation.

Only design 3 is used in the rest of this paper.

3 Feature Extraction

The Gabor filter family captures the whole frequency spec-
trum, both amplitude and phase. For Gabor feature extrac-
tion, we convolve the imageI with every Gabor filter of the
Gabor filter family at every pixel(x, y) as eq.(12)

G(x, y; fk, θm)
=

∑
x′

∑
y′ I(x− x′, y − y′)h(x′, y′; fk, θm), (12)

whereI(x, y) is the pixel intensity.
Thus we have got3 × 8 = 24 output images

G(fk, θm), k = 0 ∼ 2, m = 0 ∼ 7, and each image
has the same size to the imageI. We assume the image
I hasX × Y pixels. The pass bandwidths corresponding
to f0, f1 andf3 are π

2 , π
4 and π

8 , soG(f0, θm), G(f1, θm)
andG(f2, θm) can be done with a radix-2 decimation, a
radix-4 decimation and a radix-8 decimation, respectively.
And the sizes ofG(f0, θm), G(f1, θm) andG(f2, θm) are
reduced toX

2 × Y
2 , X

4 × Y
4 and X

8 × Y
8 . Each new el-

ement ofG(fk, θm) after decimation can be the value in
the corresponding block center, or the average value in the
corresponding block.

Now the followingG(fk, θm) all denotes the output
image after decimation.

• The phase information ofG(fk, θm) can be taken as
a feature, because it contains information about the
edge locations and other details in the imageI.

F1(x, y; fk, θm) = phase(G(x, y; fk, θm)) (13)

• The amplitude ofG(fk, θm) can be taken as a feature,
and it contains some oriented frequency spectrum in
every local of the imageI.

F2(x, y; fk, θm) = |G(x, y; fk, θm)| (14)

• The square sum of the different frequency responses
with the same orientation can be taken as a feature,
and it denotes the local energy in certain orientation.

F3(x, y; θm) = F2(x, y; f0, θm)2

+ 1
4F2(bx

2 c, by
2 c; f1, θm)2

+ 1
16F2(bx

4 c, by
4 c; f2, θm)2

(15)

In eq.(15), F2(f0, θm) is a X
2 × Y

2 image, and
F2(f1, θm) is a X

4 × Y
4 image, andF2(f2, θm) is a

X
8 × Y

8 image. The resultF3(θm) is a X
2 × Y

2 image,
so each pixel ofF2(f1, θm) is split into 4 pixels and
each pixel ofF2(f2, θm) is split into 16 pixels equally.

• The orientation in which the local has the maximum
energy can be taken as a feature, too.

F4(x, y) = k,
where F3(x, y; θk) = max

m=0∼2
{F3(x, y; θm)}.

(16)

There are some other features that can be extracted
using the Gabor filter family and not enumerated here. And
we can apply one, or several combination of these features
in our works.

4 Experiments

Experiment A. Features On Different Frequencies
We have designed two images that contain different

frequency components and extracted their features using
the Gabor filter family. Fig.8 shows our results.

Figure 8. TheF2 features of two images with different
frequency components.

Here we only extract out F2 features. The two images
are both64 × 64 pixels. FeaturesF2(f0, θm), F2(f1, θm)
andF2(f2, θm), m = 0 ∼ 7 are32 × 32, 16 × 16 and
8 × 8 matrixes, respectively. And they are shown in se-
quential three layers in fig.8. Comparing these feature im-
ages, we can find out two facts: one is that the two images
are isotropy and every feature in the same layer contains
equal energy; the other is that the energy distributions of
the two images are different: the top one is mainly in the
bands[π

4 , π
2 ] and[π

8 , π
4 ], but the bottom one is mainly in the

bands[π
2 , π] and[π

4 , π
2 ].

Experiment B. Texture Feature
In this experiment, we use two texture images, and

extract out theirF2 features like experiment A. Fig.9 shows
the two images and their features.

Figure 9. TheF2 features of two texture images.

These features indicate the energy distribution of ev-
ery image: the top image has a very strong energy at0 and
π
2 orientations; the bottom has about equal energy at every
orientation.
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If we want to classify or recognize these textures, we
can add up all the square values in every feature image, and
then let all the sums make up of a3×8 vector:V [8k+m] =∑
x,y

F2(x, y; fk, θm)2, wherek = 0 ∼ 2, m = 0 ∼ 8.

The vectors produced by the two textures are very un-
like, and they can distinguish the two textures very well
(shown in fig.10).

Figure 10. The normalized8 × 3 vectors produced by the
two texture images.

If we want to segment out these textures from other
images, we can first select out some Gabor filters corre-
sponding to those stronger features from the Gabor filter
family, then convolve the image with the selected Gabor
filters, and then add up all the outputs of the Gabor filters,
thus the areas that contain the target texture will have the
strongest responses in the image, finally we can segment
out the texture areas from the output easily. For example,
we can find that the elements V[4] and V[16] in the left vec-
tor are much larger than those in the right vector in fig.10,
so we use the two relevant Gabor filters to segment out
one texture from the mixed-texture image.Ouput(x, y) =
F2(x, y; f0, θ4)2 + 1

16F2(bx
4 c, by

4 c; f2, θ0)2.
For illuminating the performance of this texture seg-

mentation method, we show the results by using one Gabor
filter (F2(f2, θ0)) and multi Gabor filters (F2(f0, θ4) and
F2(f2, θ0)) comparatively in fig.11. The latter result is bet-
ter.

Figure 11. Texture segmentations using one or multi Gabor
filters.

Experiment C. Character Feature
In the last experiment, we give out an example on

character feature extraction. The following fig.11 shows
two character images (letters ’0’ and ’A’, size64× 64) and
theirF2(f2, θm) andF4 features.

TheF2(f2, θm) features are all8× 8 matrixes.

Figure 12. TheF2(f2, θm) andF4(f2) features of two char-
acter images.

The F4(f2) feature is an8 × 8 matrix, because it
comes from eightF3 features on the same image. In the
feature image, the strongest brightness denotes the orien-
tation 7π

8 (k = 7), and the weakest brightness denotes the
orientation0(k = 0). This feature contains the information
of the stroke orientations in the character image.

5 Conclusions

A Gabor filter family is very similar to a wavelet family,
and the most difference between them is the mode of de-
composing the 2-D frequency domain: the former is circle
mode, but the latter is square mode. And thus Gabor fil-
ters have the orientation characteristics. We have designed
three Gabor filter families and discussed the differences in
them, and we commend the third one to users. Using Ga-
bor filter family, users can extract out many features in the
image, such as featureF1, F2, F3 andF4.

The three experiments above demonstrate that these
features extracted using the Gabor filter family well repre-
sent the contents in the image. And these features can be
used in our practical applications. The parameters of the
Gabor filter family are preset and are not necessarily opti-
mal for a particular task.
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