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Abstract

In this paper, threshold selection is considered in the continuous image rather than in digital image. We prove that,

for each given object within 2D image, its optimal threshold is determined by the mean of the gray values of the points

lying on its continuous boundary. Thus, we try to deduce threshold from the gray values of the boundary rather from

the gray values of the given discrete sampling points (pixels or edge pixels). By the scheme, we well overcome some

disadvantages existing in the threshold methods based on the histogram of edge pixels. Besides, the proposed method

has the ability to well handle the image whose histogram has very unequal peaks and broad valley.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A popular tool used in image segmentation is

thresholding. Thresholding assumes that image

present a number of components, each of a nearly
homogeneous value, and that one can separate

the components by a proper choice of intensity

threshold. Many thresholding techniques are pro-

posed in 2D image processing (Sahoo et al., 1988;

Rosenfeld and Kak, 1982), including the thres-

holding methods selecting threshold by analyzing

histogram of whole image (Olivo, 1994; Otsu,

1979; Glasbey, 1993; Kapur et al., 1985), the
thresholding methods selecting threshold from

histogram of edge pixels (Weszka et al., 1974;

Wang and Haralick, 1984; Milgram and Herman,

1979; Katz, 1965; Yanowitz and Bruckstein, 1989),

etc. In this paper, we will present a new method on

threshold selection.

1.1. The problem of optimal threshold selection

In this paper, 2D image is treated as the discrete

sampling of the underlying 2D continuous func-

tion represented as f ðx; yÞ. Therefore, the bound-

ary of the objects within 2D image actually should

be some implicitly defined continuous curves de-
termined by f ðx; yÞ. We know that, the boundary

usually is such curve on the either side of which

gray values have sharp change. Thus, in terms of

computer vision theory, each boundary consists

of such points that are zero-value points of the

Laplacian function of 2D image and have high
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gradient values (Marr and Hildreth, 1980; Hara-

lick, 1984). Mathematically, the boundaries within

2D image could be represented as follows:

lðx; yÞ ¼ 0

kDf ðx; yÞkP T

�
ð1Þ

where

lðx; yÞ ¼ o2f
ox2

þ o2f
oy2

and

kDf ðx; yÞk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
of
ox

� �2

þ of
oy

� �2
s

represent the Laplacian function and gradient

magnitude function of f ðx; yÞ, respectively. T is a
predefined gradient threshold. Sometimes, it is

selected adaptively in different local neighborhood

as that in (Peter and David, 1996; Jung and Park,

1988). Each point lying on boundary has an in-

termediate gray value between object and back-

ground gray levels as illustrated in Fig. 1, where, O
is a boundary point of 1D continuous function

and has an in between gray value. Thus, the
boundary of object within 2D image is a contin-

uous curve that separates pixels of the object from

pixels of the background, and has the gray level

ranges between the object and the background

gray levels in the sense of statistics. However, the

points lying on boundaries differ from the edge

pixels detected by 2D edge detection techniques.

Meanwhile, the gray values of boundary points
differ from the gray values of the edge pixels. The

edge pixels usually have the gray values belonging

to object or background.

In principal, for each object within 2D image,

its boundary is the exact curve separating the ob-

ject from background. Thus, we try to deduce the

optimal threshold from the object�s boundary. It

is obvious that, better a threshold approximate

the gray values of the points lying on the object�s
boundary in the sense of least square error, better

the threshold separates the pixels of the object

from the pixels of the background. Thus, we think
that, for each object in 2D image, gray level that

approximates the gray values of the points lying

on the object�s boundary with least square error

will determine an optimal threshold for this object.

In other words, let Cðx; yÞ represent the boundary

of one object within 2D image. Then the optimal

threshold for the object is determined by the so-

lution of the following optimization problem:

min
r

Z
Cðx;yÞ

ðf ðx; yÞ � rÞ2 dðx; yÞ; r 2 R ð2Þ

where,
R
Cðx;yÞ ðf ðx; yÞ � rÞ2 dðx; yÞ represents the in-

tegration of error function ðf ðx; yÞ � rÞ2 over the

boundary curve Cðx; yÞ. Thus, the problem of se-

lecting optimal threshold for one object within 2D
image is converted into the problem of solving

above optimization problem (2) for the object.

In this paper, we will solve the optimization

problem (2) and present a new method to select

multiple optimal thresholds for different objects

within 2D image.

1.2. Related works

Thresholding techniques selecting threshold

from the histogram of 2D image assume that gray

values of each object are possible to cluster around

a peak of the histogram of 2D image and try to

directly compute the location of valley or peaks

from the histogram (Sahoo et al., 1988; Rosenfeld

and Kak, 1982; Olivo, 1994; Otsu, 1979; Glasbey,
1993; Kapur et al., 1985). However, in many cases,

interesting structures within 2D image only occupy

a small percentage of the whole image, such as

bone in CT image, signature in a sheet, and etc. In

these cases, histogram of whole image exhibits

several peaks of very unequal amplitude separated

by a broad valley or contains only one peak and

a ‘‘shoulder’’. For images with such histogram,
interesting structures cannot be well ‘‘seen’’ or

‘‘recognized’’ directly from the histogram of wholeFig. 1. Step-like edge point (O) of 1D function.
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image, and the threshold methods based on the

histogram of image are limited.

Thresholding techniques selecting threshold

from histogram of edge pixels can overcome the

above difficulty to some extent (Weszka et al.,

1974; Wang and Haralick, 1984; Milgram and
Herman, 1979; Katz, 1965; Yanowitz and Bruck-

stein, 1989). In many cases, they can handle image

whose histogram has very unequal peaks or broad

valley very well. They are based on the fact that,

no matter how much percentage one object occu-

pies in the whole 2D image, its threshold actually

is possible to be deduced from the gray levels of

the edge pixels of this object. Katz (1965) pointed
out that since the pixels in the neighborhood of an

edge have higher edge values, the gray level his-

togram for these pixels should have a single peak

at a gray level between the object and the back-

ground gray levels. This gray level is, therefore, a

suitable choice of the threshold value. It provides

the basis for designing threshold selection method

based on histogram of edge pixels.
Weszka et al. (1974) suggested a bi-level thres-

holding method. They first filter 2D image by a

Laplacian operator, and then select the valley of

histogram of pixels with high Laplacian value

(edge pixels) as threshold.

Wang and Haralick (1984) proposed a multi-

threshold selection method based on the histogram

of edge pixels. In their methods, edge pixels are
first classified, on the basis of their neighborhoods,

as being relatively dark or relatively light. Then

two histograms of gray level are obtained respec-

tively for these two sets of edge pixels. Threshold is

selected as one of the highest peaks of the two

histograms. By recursively using the procedure, the

multiple thresholds can be obtained.

Milgram and Herman (1979) selected thres-
holds from images containing several object classes

by clustering thinned edge pixels in a 2D histo-

gram whose axes represent gray level value and

edge value. Where, each such edge cluster suggests

its average gray level as a threshold.

Similar method as above introduced ones is

applied to select local adaptive threshold (Yano-

witz and Bruckstein, 1989). Where, 2D image is
partitioned into several non-overlapping sub-

images of equal area, and a threshold for each sub-

image is selected from histogram of edge pixels of

the sub-image by similar method as that in the

references (Wang and Haralick, 1984; Milgram

and Herman, 1979).

Thresholding techniques based on the histo-

gram of edge pixels try to deduce the threshold
from the gray values of edge pixels. We know that,

because of the ‘‘double responding’’ phenomenon

of edge pixels, the pixels closely distributing both

side of the boundary are detected out by edge

detector. Generally, the ‘‘double responding’’ edge

pixels could be categorized into two classes: one

belongs to object and has the gray value of object,

and another belongs to background and has the
gray value of background. Thus, the histogram of

edge pixels of each object has two peaks (clusters)

with similar amplitude (see Fig. 2). One peak

(cluster) represents the edge pixels in the back-

ground and another represents the edge pixels in

the object. Thresholding technique in the reference

(Weszka et al., 1974) is based on the fact. How-

ever, the technique fails for images having several
object classes. In reference (Wang and Haralick,

1984), threshold is selected as one of the higher

peaks on the histogram of edge pixels. However,

selecting directly threshold from the histogram of

edge pixels might mistakenly classify some edge

pixels and some pixels around these edge pixels.

For example, in Fig. 2, selecting the peak of cluster

A as threshold is possible to mistakenly classify
some edge pixels in cluster A and some pixels

around these edge pixels (they belong to back-

ground) into object. In references (Milgram and

Herman, 1979; Yanowitz and Bruckstein, 1989),

each edge pixel is assigned a new gray value that is

the average value of gray values of two adjacent

Fig. 2. Each object has its two peaks in the histogram of

‘‘double responding’’ edge points. A represents edge points in

the background and B represents edge points in the object.
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points of this edge pixel. By using the scheme, for

each given object, ‘‘double-peaks’’ phenomenon

does not appear on the histogram of its edge

pixels, and only one peak exists in the histogram of

its edge pixels. However, the problem what are the

suitable values to be assigned to different edge
pixels is still open, and it lacks a clear mathemat-

ical explanation.

As we have introduced, thresholding techniques

based on the histogram of edge pixels have dif-

ferent drawbacks. In this paper, we will introduce

a new threshold method that deduces the optimal

threshold from gray values of the points lying on

the boundary rather than from histogram of whole
2D image or from histogram of edge pixels. In this

way, we well overcome the drawbacks in the

thresholding techniques based on the histogram

of edge pixels (Weszka et al., 1974; Wang and

Haralick, 1984; Milgram and Herman, 1979; Katz,

1965; Yanowitz and Bruckstein, 1989). Mean-

while, comparing with the thresholding techniques

based on the histogram of whole 2D image, this
method can still well handle image whose histo-

gram has very unequal peaks or broad valley. The

proposed method is shown to be effective through

lots of examples and by comparing its experi-

mental results with the ones of Otsu�s threshold

method (Otsu, 1979) andKapur�s thresholdmethod

(Kapur et al., 1985).

2. Theoretical analysis on optimal threshold

Let Cðx; yÞ represent a boundary of a given ob-

ject in 2D image. Recall that, the optimal threshold

of this object is the solution of the optimization

problem (2). Below, we solve the optimization

problem (2). Let F ðrÞ ¼
R
Cðx;yÞ ðf ðx; yÞ � rÞ2 dðx; yÞ.

To find the threshold that minimizes F ðrÞ, we dif-

ferentiate F ðrÞ with respect to r and set the result to

zero:

F 0ðrÞ ¼
Z
Cðx;yÞ

2 	 f ðx;yÞdðx;yÞ�
Z
Cðx;yÞ

2 	 rdðx;yÞ ¼ 0

Then, we have

r ¼
R
Cðx;yÞ f ðx; yÞdðx; yÞR

Cðx;yÞ dðx; yÞ
ð3Þ

It shows that, solution of the optimization prob-

lem (2) is the mean of gray values of points lying

on the boundary Cðx; yÞ. Thus, the optimal thres-

hold of one given object accurately equals to

the mean of gray values of points lying on the
boundary of this object. In order to compute the

optimal threshold for a given object within 2D

image, we only need to compute the mean of gray

values of points lying on the boundary of this

object. Recall that, each point lying on the bound-

ary has an intermediate gray value between object

and background gray levels. Thus, statistically, the

mean of gray values of points lying on a boundary
will determine a gray level that is between object

and background gray levels.

For the given object, the histogram of its

‘‘double responding’’ edge pixels has two peaks as

shown in Fig. 2. However, the histogram of the

points lying on its boundary has the unique cluster

as shown in Fig. 3. In other words, for a given

object, the gray values of points lying on its bound-
ary will cluster together around their mean. Be-

sides, we notice that, for the same object within 2D

image, the cluster formed by the gray values

of points lying on its boundary locates between

the two clusters formed by the gray values of its

‘‘double responding’’ edge pixels. This is intu-

itively displayed in Fig. 3, where, solid curve rep-

resents the cluster of gray values of points lying on
the boundary, and two dashed curves represent

clusters of gray values of ‘‘double responding’’

edge pixels of the same object. The fact shows that,

for each object within 2D image, ‘‘two-peaks’’

phenomenon existing in histogram of edge pixels is

avoided and gray values of points lying on its

boundary will manifest as an cluster around their

mean.

Fig. 3. Histogram of gray levels of true boundary (solid curve)

and histogram of ‘‘double responding’’ edge points (two dashed

curves) of each object in 2D image.
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3. Computation of discrete sampling of gray values

of boundaries

Generally, it is impossible to compute the mean

of gray values of boundary by analytical method
from discrete 2D image. Thus, we will compute

discrete sampling of gray values of points lying on

the boundaries within 2D image, and estimate the

mean from these discrete sampling. We first in-

troduce a method to compute discrete sampling

points of the boundaries within 2D image.

In this paper, 2D image is treated as the discrete

sampling data sampled from the grid-points of 2D
regular grids as shown in Fig. 4, where all squares

constitute the continuous region occupied by 2D

image. Since boundaries of the objects within 2D

image are some continuous curves contained in the

continuous region, they will divide the set of all

squares into two classes: edge-cells, which are the

squares intersected by boundary, and non-edge

cells. The boundaries are included in the set of all
edge-cells. Thus, we can detect and extract the

boundaries from 2D image by first detecting all

edge-cells from 2D image and then approximating

the boundary in each edge-cell. In order to avoid

confusing the meanings of ‘‘edge pixel’’, ‘‘edge

curve’’ and ‘‘step-like edge’’ with the meaning of

‘‘edge’’ of square (each square has four edges), we

express the ‘‘edge’’ of square with italic, i.e., edges
of a square.

Among four edges of each edge-cell, there are at

least two edges intersected by the boundary. Thus,

all edge-cells are possible to be recognized by ex-

amining whether there are at least two interacted

edges in each square.

Let p1, p2 represent two vertices of one edge in a

square, and gðpiÞ, lðpiÞ, i ¼ 1; 2 represent gradient
magnitudes and Laplacian values of the two ver-

tices, respectively. We know that, if this edge is

intersected by a boundary, then it has the follow-

ing properties:

(1) Its two vertices p1, p2 are a pair of zero-cross-

ing points, namely, lðp1Þ 	 lðp2Þ < 0.
(2) Its two vertices p1, p2 both have high gradient

values. Namely, for the predefined gradient

threshold eTT ; gðp1Þ þ gðp2ÞP 2 	 eTT .
Therefore, based on these two rules, we can

recognize all edges intersected by the boundary

from 2D image. Here, gradient threshold eTT may be

selected as that in edge detection (Rosenfeld and
Kak, 1982). However, it is a bit small than the

gradient threshold selected for detecting thinned

edge pixels, since the two vertices p1, p2 might have

different gradient values. Certainly, it is better to

select eTT adaptively in different local region.

After marking all edges intersected by the

boundary in 2D image, by marching all squares,

all edge-cells can be found out.
Recall that, in each edge-cell, the boundary

actually is the zero-value isoline of Laplacian func-

tion of 2D image. Thus, in each edge-cell, the in-

tersecting points between the four edges and the

boundary are some zero-value points of Laplacian

function of 2D image. Their positions at the edges

and their gray values can be computed by inter-

polation. The simplest method to compute the
position and the gray value of an intersecting point

is to linearly interpolate the positions and the gray

values of two vertices of the edge at which this

intersecting point locates (Lorensen and Cline,

1987; Sabin, 1986). However, good interpolation

methods are possible to decrease the error. By

using the above scheme, eventually, we obtain the

discrete sampling points of the boundaries within
2D image and the gray values of these discrete

sampling points.

The computed discrete sampling points usually

are valid discrete sampling points of boundary for

estimating the mean of the gray values of points

lying on the boundary. We know that, because of

noise in 2D image, few possible discrete sampling

points of boundary might not be computed.
However, the lost sampling points usually have a

too small ratio comparing with the computedFig. 4. Regular grid of 2D image.
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discrete sampling points to change the validity of

the computed discrete sampling points.

4. Threshold selection method

The discussion above has demonstrated that,

for each object within 2D image, the optimal

threshold is determined by the mean of the gray

values of points lying on its boundary. Besides, the

ideal mean could be estimated or deduced from the

discrete sampling of gray values of the boundary

that are computed by the method introduced in

Section 3. In what follows, these results are used in
the selection of bi-level threshold or multi-thres-

hold from 2D image.

4.1. Bi-level threshold selection

In the case of 2D image containing only one

object class and one background class, the unique

cluster exists in the histogram of discrete sampling
points of the boundary. Thus, threshold can be

selected as the average value of gray values of the

discrete sampling points of the boundary. How-

ever, if there is much noise or other small objects

in 2D image, it is better to select threshold at the

main peak of histogram of all discrete sampling

points. In this case, some computed discrete sam-

pling points might belong to noise or the other
small objects. Selecting threshold at the main peak

may decrease the affection of noise or small object.

Usually, in the case that 2D image contains one

main object and many other very small objects, the

discrete sampling points of the boundary of the

main object would manifest itself as the main peak

in the histogram of the computed discrete sam-

pling points.

In some situations, 2D image contains more

than one object class. But we are only interested in

one main object, and try to segment this object by

a global threshold. In the case, if possible, we
could compute solely discrete sampling points of

the boundary of the main object by suitably se-

lecting gradient threshold T in Eq. (1), and then

deducing solely the threshold of the main object

from the gray values of the computed discrete

sampling points.

In Figs. 5 and 6, six different gray images are

shown. Correspondingly, their histograms are
shown in Figs. 7 and 8, respectively. We notice

that, these histograms all are not bimodal mode.

The three images shown in Fig. 5 have complex

histograms and the three images shown in Fig. 6

have such histograms that exhibit the peaks of

very unequal amplitude separated by a broad

valley or contains only one peak and a ‘‘shoulder’’.

However, by suitably selecting gradient threshold
T , the discrete sampling points of the boundary of

the main object contained within these images

could be extracted solely, and their histograms all

exhibit one main peak or even the unique and

obvious cluster. See Figs. 9 and 10, where the his-

tograms of discrete sampling points of the bound-

ary of the main object contained within the six

images are shown. Thus, the bi-level thresholds are
easily computed from these images based on the

threshold method we propose above. The seg-

mentation results of the six images are shown in

Figs. 11(c), 12(c), 13(c), 14(c), 15(c) and 16(c), re-

spectively. We notice that, the main and interesting

features within the six images are well segmented.

Fig. 5. 256-level gray images of the girl, the baboon and the goldhill.
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In order to compare the proposed threshold

method with the conventional threshold methods,

the segmentation results of the same six images by

Otsu�s threshold method (Otsu, 1979) and Kapur�s
threshold method (Kapur et al., 1985) are pro-

vided as well, which are shown in Figs. 11(a),

12(a), 13(a), 14(a), 15(a) and 16(a) and in Figs.

11(b), 12(b), 13(b), 14(b), 15(b) and 16(b), re-

spectively. We observe that, the proposed method

and the Otsu�s threshold method obtain the much
similar binary images when thresholding the im-

ages of girl, baboon, goldhill and character (see

Fig. 7. Histograms of images of the girl, the baboon and the goldhill, shown in Fig. 5.

Fig. 6. 256-level gray images of the characters, the nerve cell and the mouse nervous tissue.

Fig. 8. Histograms of images of the characters, the nerve cell and the mouse nervous tissue, shown in Fig. 6.

Fig. 9. Histograms of the discrete sampling points of the boundaries within images of the girl, the baboon and the goldhill, shown in

Fig. 5.

Fig. 10. Histograms of the discrete sampling points of the boundaries within images of the characters, the nerve cell and the mouse

nervous tissue, shown in Fig. 6.
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Figs. 11–14). However, the proposed threshold

method excels the Otsu�s threshold method when

thresholding the images of nerve cell and mouse

nervous tissue (see Figs. 15 and 16). The histo-

grams of these two images exhibit the peaks of

very unequal amplitude separated by a broad

valley or contains only one peak and a ‘‘shoulder’’
(see Fig. 8). When thresholding the images of girl,

baboon, goldhill, character and nerve cell, the

proposed threshold method excels the Kapur�s
threshold method (see Figs. 11–15). When seg-

menting the image of mouse nervous tissue, the

proposed threshold method also provides a good

result, which is better than that of the Otsu�s
threshold method, but is not as good as that of

the Kapur�s threshold method. Thus, from the
visual analysis and the comparison, the proposed

threshold method is shown to be an effective

Fig. 11. Binary images of the girl: (a) Otsu method (t ¼ 101); (b) Kapur, Sahoo and Wong method (t ¼ 139); (c) our method (t ¼ 90).

Fig. 12. Binary images of the baboon: (a) Otsu method (t ¼ 125); (b) Kapur, Sahoo and Wong method (t ¼ 142); (c) our method

(t ¼ 122).

Fig. 13. Binary images of the goldhill: (a) Otsu method (t ¼ 113); (b) Kapur, Sahoo and Wong method (t ¼ 133); (c) our method

(t ¼ 107).
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threshold method and has its own advantage in

processing specific class of images. Additionally,
comparing with the Otsu�s threshold method and

the Kapur�s threshold method, the proposed

threshold method could be easily extended to the

selection of multilevel threshold as shown in Sec-

tion 4.2.

4.2. Multilevel threshold selection

For 2D image containing more than one inter-

esting object class, multilevel thresholds are needed

to select. In the case, gray values of discrete sam-

pling points of different boundaries are mixed to-

gether. However, since gray values of discrete

Fig. 14. Binary images of the character: (a) Otsu method (t ¼ 147); (b) Kapur, Sahoo and Wong method (t ¼ 167); (c) our method

(t ¼ 148).

Fig. 15. Binary images of the nerve cell: (a) Otsu method (t ¼ 67); (b) Kapur, Sahoo and Wong method (t ¼ 88); (c) our method

(t ¼ 42).

Fig. 16. Binary images of the mouse nervous tissue: (a) Otsu method (t ¼ 205); (b) Kapur, Sahoo and Wong method (t ¼ 185); (c) our

method (t ¼ 194).
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sampling points of each boundary will cluster to-

gether around their mean, gray values of discrete

sampling points of each boundary will display

themselves implicitly as a different cluster in

the histogram of discrete sampling points of all
boundaries. See Fig. 17, where, histogram of dis-

crete sampling points of the boundaries of 2D

image containing three different objects is shown.

By identifying appropriate clusters from the histo-

gram of discrete sampling points of all boundaries,

clusters corresponding to different boundaries are

found out. Their means are approximation of the

means of gray values of different boundaries. Thus,
by computing the mean of each cluster, the means

of gray values of different boundary are estimated,

and therefore, multilevel thresholds corresponding

to different objects are obtained.

We know that, the clusters corresponding to

different object boundaries usually manifest as the

main peaks in the histogram of discrete sampling

points of all boundaries. Therefore, similarly, if
there is noise or other small object in 2D image, it

is better to select the gray level at the peak of each

main cluster as threshold. In other words, we can

select thresholds from the histogram of discrete

sampling points of all boundaries by peak detec-

tion methods (Olivo, 1994; Papamarkos and

Gatos, 1994) as well.

In Fig. 18, we consider the multilevel threshold
selection from a 2D CT (leg section) image con-

taining three different objects (bone, muscle and

connective tissue). The histogram of the image is

shown in Fig. 19 (below). It has a broad valley and

very unequal peaks (the peak of bone can hardly

be ‘‘seen’’ from the histogram of the image).

However, in the histogram of discrete sampling

points of the boundaries within the image, which is
shown in Fig. 19 (above), three obvious clusters,

which correspond to boundaries of bone, muscle
and connective tissue, respectively, exist. Themeans

of the three clusters correspond to thresholds of

bone, muscle and connective tissue, respectively.

Segmentation result of the image based on the

selected thresholds is displayed in Fig. 20, where

background and each object segmented from 2D

image are displayed, respectively.

In Fig. 21, we consider the multilevel threshold
selection from 2D CT head image containing two

different objects (background, bone, and soft tis-

sue). The histogram of the image is shown in Fig.

22 (below). It has a broad valley. However, in the

histogram of discrete sampling points of the

boundaries computed from the image, which is

shown in Fig. 22 (above), two obvious clusters

exist. They correspond to the boundaries of soft
issue and bone, respectively. By computing the

mean of the two clusters, the thresholds of bone

and soft tissue are obtained. The corresponding

segmentation result is displayed in Fig. 23, where

each structure in the image, including background,

soft tissue and bone, is displayed, respectively.

Fig. 17. Histogram of discrete sampling points of boundaries

within 2D image including three objects.

Fig. 18. CT image of leg with three different objects.

Fig. 19. Histogram of discrete sampling points of boundaries

(above), histogram of 2D image (below).
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5. Analysis of method

In the proposed threshold method, threshold

is deduced from the histogram of the discrete

sampling points of boundary. Thus, it is useful to

enhance the quality of the computed discrete

sampling points of boundary. Recall that, non-

linear diffusion methods allow a denoising and

smoothing of image intensities while retaining and

enhancing edges (Weickert, 1998). Thus, in order
to enhance the quality of the poor discrete sam-

pling points of boundary, we suggest using non-

linear diffusion methods as the preprocessing

before the discrete sampling points of boundary

are computed. By the scheme, usually the poor

quality of the discrete sampling points of bound-

ary could be well enhanced. However, we observe

another important fact that, in many cases (per-
haps not in all cases), even if the quality of the

discrete sampling points of boundary could not be

well enhanced, it does not necessarily and greatly

affect the computed threshold. In other words, the

computed threshold sometimes could keep stable

to some extent. In order to demonstrate the fact, in

Fig. 23. Different structures (white area) segmented from 2D CT image of head by selecting multi-thresholds. (a) Background, (b) soft

tissue, (c) bone.

Fig. 21. CT image of head with three different structures.

Fig. 22. Histogram of discrete sampling points of boundaries

(above), histogram of 2D image (below).

Fig. 20. Different structures (white area) segmented from 2D CT image of leg by selecting multi-thresholds. (a) Background, (b)

connective tissue, (c) muscle, (d) bone.
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what follows we will discuss the sensitivity of

the proposed threshold method to noise and to the

selection of different gradient thresholds T . The

noise and the different selection of the gradient

threshold T in Eq. (1) are main factors affecting the

quality of discrete sampling points of boundary.

5.1. Analysis of the sensitivity to noise

In the proposed threshold method, the compu-

tation of the discrete sampling points of the

boundaries is mainly determined by the values of

Laplacian function of 2D image. Therefore, the

affection of the proposed method by noise is
mainly determined by the sensitivity of the sign of

Laplacian operator to noise. Generally, the sensi-

tivity of sign of Laplacian operator to noise is the

main drawback of zero-crossing operator. How-

ever, this drawback is overcome to some extent in

the proposed method, since the discrete sampling

points of boundary are computed (by interpola-

tion) only from zero-crossing points with high
gradient values rather than from all zero-crossing

points. The detailed explanation is as below.

Suppose that, the noise added to a given binary

image is an independent normal having mean 0

and variance r2, and let g denote the noise func-

tion. Then the expression of digital Laplacian

operator is rewritten as follows:

lðq0Þ ¼
X
q2V8

ðf ðqÞ þ gðqÞÞ � 8 	 ðf ðq0Þ þ gðq0ÞÞ

where, V8 represent 8-neighborhood of pixel q0.
Below, we suppose that q0 is an edge pixel. Then,

V8 is separated into two subsets A and B by the

boundary. Here, we assume that pixels in A belong

to the object and pixels in B and q0 belong to the

background. Then, we have

lðq0Þ ¼
X
q2A

ðf ðqÞ � f ðq0ÞÞ þ
X
q2V8

gðqÞ � 8 	 gðq0Þ

The mean and variance of digital Laplacian lðq0Þ is
as follows:

Eðlðq0ÞÞ ¼
X
q2A

ðf ðqÞ � f ðq0ÞÞ; rðlðq0ÞÞ ¼ 72 	 r2

Since the value of probability pðj
P

q2V8 gðqÞ � 8 	
gðq0ÞjPEðlðq0ÞÞÞ equals to the value of probability

pðjlðq0Þ � Eðlðq0ÞÞjPEðlðq0ÞÞÞ, by Chebyshev in-

equality,

pðjlðq0Þ � Eðlðq0ÞÞjPEðlðq0ÞÞÞ6
72

Eðlðq0ÞÞ2
	 r2

6
72

ð
P

q2A ðf ðqÞ � f ðq0ÞÞÞ2
	 r2

Let M represent the statistical difference between
object and background gray levels. Since in V8,
there are at least three pixels belonging to object,

namely, at least three pixels in A, the probability of

‘‘Laplacian value changing sign’’ at edge pixels q0
is less than ð8 	 r2Þ=M2

. It concludes that, although

the noise is enlarged in the digital Laplacian op-

erator, but the probability of ‘‘Laplacian value

changing sign’’ could be small when noise is small
(with small variance r2) or M has a large value

(have high edge magnitude). Therefore, our ap-

proach can keep the stable ‘‘Laplacian sign’’ with

large probability when edge pixels have high edge

magnitude or only little perturbation occurs in

gray values of 2D image.

As an example, let�s consider a binary image

consisting of gray levels of black (0) and white
(255) (see Fig. 24(a)). It is added the enlarged

gaussian noise in turn as shown in Fig. 24(b)–(d).

Histograms of these images are shown in Fig. 25,

and histograms of discrete sampling points of the

boundaries within these images are shown in

Fig. 26, respectively. Thresholds computed from

the histogram of discrete sampling point of the

boundary within the four images are 126, 127, 124
and 128, respectively. We notice that, even if dif-

ferent noise is added to the image, but discrete

sampling points always keep clustering around

some nearly equal numbers––they all are approx-

imation of the mean of gray values of points lying

on the boundary. Thus, this experimental result

shows that the threshold computed by our method

could keep stable to some extent when noise exist
in image.

5.2. Analysis of the sensitivity to the gradient

thresholds T

Usually different gradient threshold T might

produce different discrete sampling points of
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boundary. Thus, it is important to explore the

affection of gradient threshold T to the final

threshold computed by our threshold method. We

do many experiments in which the edge map (the

edge pixels, here they are detected by Prewitt de-

tector, Rosenfeld and Kak (1982)), the histogram
of the discrete sampling points of the boundary

and the global threshold are computed when dif-

ferent gradient threshold T is selected. Through

these experiments, we observe that, the edge map

and histogram of the discrete sampling points of

the boundary are comparatively apt to change

when different gradient threshold T is selected, but

the global threshold computed by the proposed
threshold method is comparatively stable. In other

words, when gradient threshold T selects different

values, even if the edge map and the histogram of

the discrete sampling points of the boundary have

great change, the global threshold computed by

the proposed threshold method might has little

change. Let us see some examples shown in Figs.

27 and 28. In Fig. 27, the edge map, the histogram

of the discrete sampling points of the boundary

and the bi-level threshold are computed from the

image of girl when gradient threshold T selects
three different values 40, 100 and 160. Three

different edge maps are shown in Fig. 27(a)–(c),

respectively. Three different histograms of the dis-

crete sampling points of the boundary are shown

in Fig. 27(a1)–(c1), respectively. Three bi-level

thresholds are 90, 87 and 92, respectively. The

corresponding binary images of the three bi-level

thresholds are shown in Fig. 27(a2)–(c2), respec-
tively. In Fig. 28, the edge map, the histogram of

the discrete sampling points of the boundary and

the global threshold are computed from the image

of baboon when gradient threshold T selects three

different values 40, 100 and 200. Three different

Fig. 24. Binary image and its changed versions added the enlarged gaussian noise in turn.

Fig. 25. Histograms of the images shown in Fig. 24.

Fig. 26. Histograms of discrete sampling points of boundaries within the images in Fig. 24.
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edge maps are shown in Fig. 28(a)–(c), respec-
tively. Three different histograms of the discrete

sampling points of the boundary are shown in Fig.

28(a1)–(c1), respectively. Three bi-level thres-

holds are 129, 124 and 122, respectively. The cor-

responding binary images of the three bi-level

thresholds are shown in Fig. 28(a2)–(c2), respec-

tively. We can see that, in Figs. 27 and 28, when

gradient threshold T selects three different values,
the edge maps have great change, and the histo-

grams of the discrete sampling points of the

boundary are changed. However, the bi-level

thresholds computed by the proposed threshold

method have only small change. Specially, their

corresponding binary images have little difference.

The similar results are observed in the experiments
we have done on many other images. Thus, these

examples show that, in many cases (perhaps not in

all cases), the proposed threshold method could

keep stable to some extent. It is not very sensitive

to the different selection of gradient thresholds T
as long as most discrete sampling points of the

boundary of the main object within image could be

computed from the image.

6. Discussion and conclusion

In threshold techniques, there are two classes

of important methods: the threshold techniques

Fig. 27. Corresponding edge maps (a)–(c), histograms of the discrete sampling points of boundary (a1)–(c1), and segmentation results

(a2)–(c2) of the image of girl when gradient threshold T selects three different values from low to high (from left-to-right), respectively.
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based on the histogram of whole image and the

threshold techniques based on the histogram of

edge pixels. The former is widely used in image

processing. However, they cannot well deal with
such images whose histograms exhibit several

peaks of very unequal amplitude separated by a

broad valley or contain only one peak and a

‘‘shoulder’’. The later overcomes the mentioned

difficulty to some extent and could process such

images. However, they have other various draw-

backs as pointed out in Section 1.2. We notice

that, those drawbacks of the threshold techniques
based on the histogram of edge pixels are actually

brought by two factors. One is the ‘‘double-

responding’’ phenomenon of edge pixels––an

important phenomenon in edge detection of 2D

discrete image, and another is the fact that edge

pixels have gray values either belonging to object

or belonging to background.

In order to overcome the drawbacks of the
threshold techniques based on the histogram of

edge pixels, this paper considers the threshold in

continuous image rather in discrete image. For the

purpose, 2D image is implicitly reconstructed and

the discrete sampling points (and their gray values)

of the continuous boundaries are computed from

the reconstructed continuous image by interpola-

tion. Here, the boundaries of objects within image
are referred to the continuous curve determined

by Eq. (1). Usually, the points on the boundary

differ from edge pixels. They locate between each

pair of adjacent ‘‘double-responding’’ edge pixels,

Fig. 28. Corresponding edge maps (a)–(c), histograms of the discrete sampling points of boundary (a1)–(c1), and segmentation results

(a2)–(c2) of the image of baboon when gradient threshold T selects three different values from low to high (from left-to-right), re-

spectively.
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and have gray values between object and back-

ground gray values, differing from the gray values

of edge pixels. Since we prove that, for each object

within image, its optimal threshold is determined

by the mean of the gray values of the points

lying on its boundary, in this paper, thresholds
corresponding to different objects are deduced

from the histogram of discrete sampling points

of the boundaries. By the scheme, the pheno-

menon that each object has ‘‘two-peaks’’ in the

histogram of its edge pixels is eliminated, and

therefore, many drawbacks of the threshold tech-

niques based on the histogram of edge pixels are

well overcome.
We think that, selecting threshold from the

discrete sampling points of boundaries not only

has a clear mathematical explanation, but also is

more reasonable than selecting threshold from

histogram of edge pixels. The reason is that

the boundary is the continuous curve separating

pixels of object from pixels of background and has

gray values range between object and background
gray levels. However, edge pixels might have gray

values either belonging to object or belonging to

background.

Lots of examples and the experiment comparing

the proposed threshold method with the Otsu�s
threshold method and Kapur�s threshold method

show that, the proposed threshold method is an

effective threshold method. It can well handle
image whose histogram has very unequal peaks or

broad valley, and can select threshold for those

structures that only occupy a small percentage of

the whole 2D image. Generally, such structures

cannot be well ‘‘recognized’’ from the histogram of

2D image, and therefore are not easy to select

corresponding threshold by the threshold tech-

niques based on the histogram of whole image.
Comparing with the conventional Otsu�s threshold
method and Kapur�s threshold method, the pro-

posed threshold not only has its own advantage in

processing the specific class of images, but also is

easy to be extended to the selection of multilevel

threshold. In addition, the proposed threshold

method has obvious geometric meaning––it com-

putes such threshold that approximates the gray
values of points lying on the object�s boundary

with least square error.

In this paper, threshold is deduced from the

histogram of the discrete sampling points of

boundary. It is selected as the mean of the gray

values of the discrete sampling points of boundary.

Such a statistical method ensures that, the com-

puted threshold could keep stable to some extent
as long as most discrete sampling points of the

boundary of the main object within image could be

computed from the image. In Section 5.1, we show

that, although different enlarged gaussian noise are

added to the image, but the computed threshold is

possible to keep stable to some extent. In Section

5.2, we show that, in many cases (perhaps not in

all cases), when different gradient thresholds T is
selected, the edge map (or discrete sampling points

of boundary) is apt to change. However, the

threshold computed by the proposed threshold

method is possible to have only little change. Thus,

in many cases (perhaps not in all cases), even if the

poor quality of edge map or the discrete sampling

points of boundary could not be well enhanced, it

does not necessarily and greatly affect the com-
puted threshold.

Generally, thresholding assumes that image

present a number of components with nearly ho-

mogeneous value. Thus, the gray values of the

points lying on the boundary usually exhibit ob-

vious cluster around their mean, and we could

estimate the mean by compute the average value of

the discrete sampling points of the boundary.
Here, even if the discrete sampling points cannot

be computed in few parts of boundary (i.e., closed

boundary could not be detected by the method),

but they usually only occupy a small percentage of

the all computed discrete sampling points. Thus,

the mean usually can still keep stable to some ex-

tent, see Section 5.2 and the discussion above. We

note that, in Section 2, the result in Eq. (3) yields
even if Cðx; yÞ is only a piece of boundary rather

than a closed boundary. Thus, the proposed

threshold method could be used to compute local

threshold. In other words, in the local region

containing Cðx; yÞ (here Cðx; yÞ is assumed to be a

piece of boundary), the mean of gray values of

points lying on the boundary Cðx; yÞ determines an

optimal local threshold of the local region.
Weszka et al. (1974) proposed a bi-level

threshold method that selects the valley of histo-
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gram of pixels with high Laplacian value (edge

pixels) as threshold. The method is based on the

phenomenon that each object has ‘‘two-peaks’’ in

the histogram of its edge pixels. However, because

of the same phenomenon, the method is limited

and cannot be extended to the selection of mul-
tilevel threshold. By avoiding the ‘‘two-peaks’’

phenomenon existing in the histogram of edge

pixels, the proposed method can be easily extended

to multilevel threshold selection, while it could

well compute bi-level threshold.

The proposed method has been used to many

images, and satisfactory results are obtained.
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