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Abstract

A new method for constructing triangular patches is presented. A triangular patch that interpolates given
boundary curves and cross-boundary slopes is formed by blending three traditional side-vertex interpolation
operators (Nielson, 1979) with a newmterior interpolation operator.The new operator is the solution of an
interpolation process that interpolates both the interior and the boundary of the triangular domain. The interior
interpolation operator has better approximation precision on the interior of the triangle than the side-vertex
operators. The constructed triangular patch reproduces polynomial surfaces of degree four. Comparison results
of the new method with the side-vertex method (Nielson, 1979) are included.

0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the fields of CAD and free-form surface modeling, the construction of surfaces plays an important
role. To make the process of constructing complex surfaces simple, piecewise techniques are frequently
used, with four-sided and triangular patches being the most popular choices. This paper discusses the
process of constructing a curved triangular patch that interpolates given boundary curves and cross-
boundary slopes.

The first smooth interpolant to boundary curves of a triangle was proposed by Barnhill, Birkhoff and
Gordon (1973). The triangular patch is constructed usin@Bth@lean sum schemaAfter their method,
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several other papers have discussed the boundary curve interpolation problem for triangular patches.
Gregory (1974) introduced theonvex combination methadto computer aided geometric design and

the idea was further developed in papers (Charrot and Gregory, 1984; Gregory, 1983). To construct a
triangular patch, three interpolation operators each of which satisfies the interpolation conditions on two

sides of a triangle are constructed, the combination of the three interpolation operators forms the curved
triangular patch.

Nielson (1979) presented side-vertex method foconstructing a curved triangular patch using
combination of three interpolation operators, each satisfying the given interpolation conditions at a
vertex and its opposite side. Based on operators similar to Nielson’s approach, Hagen (1986) developed
a method for constructingeometric surface patchefhese results have been generalized to triangular
surface patches with first and second order geometric continuity (Hagen, 1989; Nielson, 1987). The
method in (Foley and Opitz, 1992) is developed doattered data interpolatiorits conversion process
works for constructing curved triangular patches. The problem of constructing curved triangular patches
is also studied in (Kuriyama, 1994; Varady, 1991; Zhang et al., 1993).

The common point of the methods (Charrot and Gregory, 1984; Gregory, 1974, 1983; Hagen, 1986;
Nielson, 1979) is that three interpolation operators are used to construct a curved triangular patch
and these interpolation operators consider interpolation conditions on the boundary of the triangular
domain only. This paper presents a method to construct a curved triangular patch by combining four
interpolation operators: aimterior interpolation operatorand threeside-vertex operatorgNielson,

1979). The construction of the new interpolation operator is different from traditional interpolation
operators in that interpolation conditions are not only set for the boundary but also the interior of the
triangular domain. This is achieved by requiring three quartic curves (actually, surfaces) to be tangent to
a plane at their intersection point. This is a new approach in surface construction. While the side-vertex
operators have better approximation precision for areas close to the boundary edges of the triangle,
the interior interpolation operator has better approximation precision for the interior of the triangle.
The constructed triangular patch satisf&s boundary condition and reproduces polynomial surfaces

of degree four. The new method can also be extended to congtfutttangular patches by replacing
Nielson’s side-vertex operators with Hagen'’s interpolation operators (Hagen, 1986).

The rest of the paper is arranged as follows. In Section 2, the problem to be studied is formulated
and the basic idea of the new method is described. In Section 3, the construction process of the interior
interpolation operator using three quartic curves is described. The construction of a triangular patch by
combining four interpolation operators is discussed in Section 4. Comparison results of the new method
with Nielson’s approach (1979) are shown in Section 5. The concluding remarks are given in Section 6.

2. Problem formulation and basic idea

Let T be a triangle with vertices; = (x;, y;), i =1, 2, 3, in thexy-plane, and:; denote the opposite
side ofv;, as shown in Fig. 1. The goal here is to construct a funcHp(x, y) on the triangular domain
T that interpolates gived'! boundary curves and cross-boundary slopes. Without loss of generality, we
shall assume that the given boundary curves and cross-boundary slopes are takerCtrdametion
F(x,y) defined onT. The constructed triangular function would reproduce polynomial surfaces of
degree four, that is, if'(x, y) is a polynomial surface of degree four @hand if Pr(x, y) agrees with
F(x,y) and its cross-boundary slopes on the bounding edg&s thfen P (x, y) = F(x,y) onT.
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Fig. 1. Area coordinates with respect®o

The construction process @ (x, y) consists of two steps. First, amterior interpolation operator
P(x, y) defined onT is constructed. The construction of this interpolation operator is to ensure that the
interior shape of the resulting triangular patch is also a consideration factor in the construction process of
the triangular patchP (x, y) interpolates the given boundary curves but may not interpolate the given
cross-boundary slopes. The desired triangular paetx, y) is then formed by combining® (x, y)
with three side-vertex operatorglefined by Nielson (1979). In addition to ensuring that the required
interpolation conditions are satisfied by the constructed triangular patch, the combination process is also
arranged in a way so that the shapePefx, y) is primarily determined byP (x, y), while the side-vertex
operatorsV; (x, y), i = 1,2, 3, are mainly used as transition surface patches to make the connection of
Pr(x, y) with adjacent surface patches smooth.

Barycentric coordinates will be used in this work to construct the triangular patch, y). Given
a pointg of T, the barycentric coordinates gfwith respect tol' (see Fig. 1), denotedL,, L, L3),
satisfy the following properties: (1); is a linear function with value one at and zero along the sidg;
(2) ¢ = L1v1 + Lovy + L3vs.

3. Interior interpolation operator

The construction of the interior interpolation operator is based on that of three quartic curves. The
construction of these quartic curves is described first.

3.1. Constructing quartic curves

Given an arbitrary poing = (x, y) of T, let ¢ = (;, ¥;) be the intersection point of the sidewith
the line that passes throughandg, i = 1, 2, 3, as shown in Fig. 2. IfL4, L, L3) are the barycentric
coordinates ofy with respect to', then we havey, = 3221, g, — LpLERah and g, = Lpatian,
respectively.

The direction vector from; to g; is denoted by:;. The given function values and derivatives along
the direction; atv; andq; are denoted by (v,), 2%, F(q,) and 5%, respectivelyj = 1, 2, 3.

Let P(q) = P(x, y) denote the value of the |nter|or mterpolatlon operaEbatq P(q) = P(x,y)
is to be determined. Nevertheless, we shall assume that the vaRigpt= P(x, y) is known to us at
this moment so we can use this value and four other values as interpolation conditions to construct a
quartic curvef;(r). The five interpolation conditions am(v;), 2222, P(q), F(g;) and 292 atv;, ¢

on;
andg;, respectively, as shown in Fig. 3. Let the distances fioro ¢ andgq, be denoted byll andz;,,
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Fig. 2. The intersection pointg;.

Fig. 3. A quartic interpolation curve.

respectively, then the quartic curyir) that interpolates the above five interpolation conditions can be
defined as follows:

(1 — 1;2)°
th(tin — 1;2)%
wherer is the parameter and; (r) are Nielson's Hermite (side-vertex) interpolation operators (Nielson,
1979),

Ni(t) = Ho(ti> F(v;) + Hl(})zizaF(”") + Hz(%) F(q,) + H3(%>ti23F(qi), )

fit) = Ni(t) + [ P(q) — Ni(t:i1)] =123, @

i2 i2 on; i2 i2 on;
with

Ho(s) = (s — D?(2s +1),  Hi(s) = (s — 1)%s,
Ho(s) = s%(—2s + 3), Hs(s) = s%(s — 1),
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being cubic Hermite basis functions ¢ 1].
The quatrtic curvef; (¢),i = 1, 2, 3, satisfies the following interpolation conditions:

dfi(0)  IF ()

fi@=F@). —4 o,
fi(ti) = P(q);

d i oF i
Filt) = F(q,), filtiz) _ 9F(q ).

dr on;

The unknownP(gq) = P(x, y) is the intersection point of the curve&(¢), f>(r) and f3(r) atgq. Its
value is determined by requiring these curves to be tangent to the same piarknhatsolution will be
discussed in Section 3.2.

Note As ¢ = (x, y) being an arbitrary point of, f;(¢) andN;(¢) are actually surfaces. Whenakes
on the value of;;, one gets two surfaceB(x, y) andN;(x, y) from (1) and (2), respectively.

3.2. Constructing interior interpolation operator

As 1/t =1 — L;, the derivative off;(¢) defined in (1) along the directiony at pointr =, is

dfi(ti1)
=P A, — B;
» (q9)A; — B;, €)
where
202L; — 1)
i = ————li2,
Li(1-L)) @
B, = Ni(ti) A, — dN; (1i1)
i — 4Vilk1 i dl
with
IF ()
N;(ti1) = Ni(x,y) = Ho(1—L)F(v;) + Hi(1— L)t ™
0F (q.
+ Hol— L)F () + Hy(L— Liig =22,
dN; (1)  dN;i(x,y) , F(v;) , oF (v;)
= =HQ1-L)——+H,(1-L;
dr dr o ) tio T+ Hy( ) an;
F(q.: 9F (a-
IR R EAC L e 8’(1"’).
i2 i

The unknownP (x, y) is the intersection point of these curvegaits value is determined by requiring
f1(2), f2(¢) and f3(¢) to have the same tangent planggaNamely, by solving the following equation

|:(df1(til) 9 de(ti1)> _ df3(ti1):| ~0 %)

dl’ll dl’lz dl’l3
where(a x b) denotes the cross product of vectarandb, [a.b] is the dot product of vectors andb.
The solution of (5) is

Ki(x,y)B1+ Ko(x, y)Bo + K3(x, y) B3
Ki(x, y)A1 + Ka(x, y) Az + Ka(x, y) Az’

P(x,y) =

(6)
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where
L1(x1 —x2) + La(x3 — x2) L1(y1 — y3) + La(y2 — y3)
Kl(x’ Y) -
t22(L1+ L3) t32(L1+ L»)
_ Li(x1 —x3) + Lo(x2 — x3) L1(y1 — y2) + L3(yz — y2)
t32(L1+ L») t22(L1+ L3) ’
L1(x1 —x3) + La(x2 — x3) La(y2 — y1) + L3(y3 — y1)
K2(x5 y) =
t32(L1+ Ly) t12(Lo + L3)
_ La(x2 —x1) + La(xz — x1) La(y1 — y3) + La(y2 — y3)
t12(Ly + L3) t32(L1+ L») ’
Ly(x2 — x1) + La(x3 — x1) L1(y1 — y2) + L3(y3 — y2)
K3(x,y) =
t12(Lo + L3) t22(L1+ L3)
_ La(x1 —x2) + La(xz —x2) La(y2—y1) + La(yz —y1)
too(L1+ L3) t12(L2 + L3) ’

andA;, andB;, i =1, 2, 3, are defined in (4). Note that from (4) and (6) it is easy to seeRliaf y) is
indeed a function ok andy. P(x, y) is called arinterior interpolation operator.

Theorem 1. P(x,y) defined by(6) interpolates the given boundary curves Bf and reproduces
polynomial surfaces of degree four.

Proof. By symmetry, it is sufficient to show that(x, y) interpolates the given boundary curve én
only. Fores, we haveLs; =0 and

Ni(x,y) = Na(x, y),
dNi(x, y) _ _ dNa(x, y)

dr d

Ki(x,y) = Ka(x,y),

Al - _A2a

B, =—B>.

Thus
Bs
P(x,y)|L3—0= i = N3(x, y)|15=0-
3 L3=0

SinceNs(x, y) satisfies the given interpolation conditidt(x, y) on Lz = 0, one get (x, y) = F(x, y).

If F(x,y) is a quartic polynomial, thed (x, y) is a quartic curve along the; direction. A quartic
curve can be determined by five interpolation conditions uniquely. Therefore, with the faBt(that) =
F(x,y)in (1), f:(t) would be exactly the same &%, y) along the:; direction and, consequently, would
be tangent to the tangent plane of the surfage, y) atr =, i = 1, 2, 3. The solution of Eq. (5) is
unique, so we hav® (x, y) = F(x, y) for any(x, y) of T. This completes the proof of the theorent

It can be shown that, in generat(x, y) defined by (6) does not interpolate the given cross-boundary
slopes ofT". The process of constructing triangular patch or” will be discussed in the next section.
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However, it should be pointed out that if@ triangular patch is all we need, thefi(r) can be defined
as follows

t(t —t;

fi(t) = Ni(t) + [P(q) — N; ([il)]g,
tin(tix — ti2)
where

N;(t) = (1— %)F(vi) + %F(qi)-

i2 i2
In this case P (x, y) defined by (6) reproduces polynomial surfaces of degree two.

4. Congtruction of C* triangular patch on T

In this section we discuss the construction process@f iangular function patch using combination
of four interpolation operators.
In (2), whenr takes on the value ofy, one gets thresurface patched/; (x, y), No(x, y) andN3(x, y).
The side-vertex interpolation operatdf(x, y) satisfies the given interpolation conditions gnHence,
the shape oW; (x, y) inthe area close tg is dominated by the given interpolation conditio®x, y), on
the other hand, is constructed to reproduce polynomial surfaces of degree four. It has better approximation
precision thanh;(x, y) on the interior of T, in terms of error in the associated Taylor series. The
triangular patchPr (x, y) on T will be constructed in a way so that along and near the sid#; (x, y)
has a bigger influence aPy (x, y), while in the interior ofT", P(x, y) has a bigger influence aPy (x, y).
Pr(x, y) is defined as follows:

Pr(x,y) =wiNi(x, y) + waNa(x, y) + waNa(x, y) + w.P(x, y), (7)
where

wy = L3L3/W,,

wy = L3L2/W,,

wy = LIL3/ Wi, ®)

w, = 27L,LoL3/ W,,

W, = L3L3+ L3L3 + L3L3 + 2711 L, Ls,

N;(x, y) are defined in (2) andL,, Lo, L3) are the barycentric coordinatesg (x, y).

The weight functionsv, w, andwsz have properties similar to the ones defined in (Nielson, 1987),
i.e., on the side;, w; =1, andw; = w, = 0 whenj #i. The value ofw, is bigger thanw,, w, andws
for points close to the center of tiie Therefore,P (x, y) has a bigger influence on the shapePefx, y)
on the interior ofl" while N; (x, y) have bigger influence on the shapeRf(x, y) for areas close to the
sides ofT.

The factor 27 in the definition ab. is actually a degree of freedom. Its role is to ensure that, y)
has a bigger influence aPy (x, y) in the interior ofT. The influence ofv,. on the shape oPr(x, y) has
been examined using the data sets shown in Section 5. The experiment results show that using numbers
bigger than 24 does not improve the result any further, i.e., the shape of the constructed surface visually
has no difference when the number is bigger than 24. Its value is set to 27 because at the demter of
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have 27.,L,L3; = 1. Note that, with 27, we have; = w, = wz = 1/84 andw, = 81/84 at the center of
T.Hence,P(x, y) indeed would have a bigger influence on the valu®gfx, y) on the interior ofT'.

As the shape ofPr(x, y) is mainly determined byP (x, y), N;(x,y), i = 1,2,3, can be regarded
as transition surface patches whose roles are to make the connecitgiixofy) with adjacent surface
patches smooth.

Theorem 2. The triangular patchPr(x, y) defined by(7) interpolates the given boundary curves and
cross-boundary slopes dh.

Proof. We first prove thatP; (x, y) interpolates the given boundary curves at interior points of the sides
of T. By symmetry, it is sufficient to show th& (x, y) satisfies the given interpolation conditions&n
only.

First, note thatL3 = 0 ones. Hence,w; = w, = w, = 0 andws = 1. ConsequentlyPr (x, y)|1,—0 =
N3(x, y)|1,=0. Therefore,Pr(x, y) interpolates the given boundary curve on the interio#z0f

Next, we show thaiPr (x, y) interpolates the given cross-boundary slope on the interieg.dfor a
given direction vectot, let % denote the first partial derivative with respeci to

As L3 =0, we have,

w1 dwy
Welrg=0= E Lo =50 Lo =0,
w3lr—0 = 1.
Thus
dPr(x,y) _ {Ng(x,y)% 4 P(x, y)3wc n 3N3(X,y)} ‘
al L3=0 al al ol L3=0

Sincew; + wy + w3 + w. = 1, andN3(x, y) and P(x, y) have the same value digz = 0, one gets

Jws 0w, 0
Ns(x,y)W-FP(x,y) =N3(x,y)ﬁ(w3+wc)

al L3=0 L3=0
0
= N3(x, y) — (w1 + w2 + w3 + w,) =0.
al L3=0
Hence,
aPT(X,)’) _8N3(X,y)

So, Pr(x, y) interpolates the given boundary curves and cross-boundary slopes on the three ides of
except the three vertices of.

On the other hand, it is easy to see thatx, y), N>(x, y), N3(x, y) and P(x, y) interpolate the given
function values and first derivatives at the verticegofSo, their combinatioP; (x, y) interpolates the
given function values and first derivatives at the vertice® afs well.

ConsequentlyPr (x, y) interpolates the given boundary curves and cross-boundary slopes on the three
sides ofT . This completes the proof of the theoren
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Remark. Ni(x, y), Na(x,y), Na(x,y) and P(x,y) are (at leastl’! continuous orf" and interpolates
the given function value and first derivatives at the vertgx y,) of T. So, for anys > 0, there is5 > 0,
such that whetw, — x| < 8 and|y; — y| < 8§, we have

"P(x,y)  9"F(x1,y1)

o o <eg, n=01

and
0"N;(x,y) _ 9" F(x1, y1)
aln aln

<g, n=0,1i=1 23,

respectively, where;il denotes the first partial derivative with respect.t€onsequently, together with
the proof of Theorem 2 above, one gets tRalx, y), the convex combination a¥Vy(x, y), No(x, y),
Niz(x,y) and P(x, y), is C* continuous at and in the vicinity afi,, y1) of 7. Similarly, Py (x, y) is C*
continuous at and in the vicinity @f», y,) and(xs, y3) of T. Therefore, the surface patéh (x, y) is C*
continuous or¥’. O

As N;(x,y),i =1, 2,3, can only reproduce cubic polynomials, the polynomial interpolation precision
of Pr(x,y) is one degree lower tha®(x, y). One can makePr(x, y) have the same polynomial
interpolation precision a® (x, y) by definingw;, i =1, 2, 3, andw, as follows:

wy = cngL%/ Wi,
wy = cL3L3/W,,
ws = csLIL3/ W, 9)
we = 27(14+c1+co+ c3)LiloL3/ Wy,
W, = c1L5L3+ coL3L3 + c3L2L5 +27(L+ c1 + ¢z + c3) LiLoLs,
where

/{ IP(x,y) dF(x,y) }2
C; = — del-
8r,~ 8r,~

€

is an integral along the side, with t; being the unit outward normal vector ef. If F(x,y) is a
polynomial of degree four, we have=0,i = 1, 2, 3. ConsequentlyPr (x, y) = P(x, y).

5. Experiment

In the design of free-form surfaces, isophotes (Poeschl, 1984), reflection lines (Klass, 1980) and
highlight lines (Beier and Chen, 1994) have been proved to be effective tools in assessing the quality
of a surface. In this section, the highlight line model is used to compare the new method with Nielson’s
approach (Theorem 3.1 of (Nielson, 1979)) that interpolate both the boundary curves and cross-boundary
slopes. Nielson's approach reproduces cubic polynomial surfaces. The weight functions for the new
method are defined by (8). Six bi-variate functions proposed by Franke (1979) are used in the comparison
process. They are
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Fi(x,y) = 3.9exd—0.259x — 2)* — 0.25(9y — 2)?]
+3.9exd—(9x + 1)2/49— (9y + 1)/10]
+ 2.6 ex{ —0.25(9x — 7)% — 0.25(9y — 3)?]
— 1.04exd—(9x — H* — 9y — 7?],
F(x,y) = 5.2exg18y — 18x]/(9exd18y — 18¢] +9),
F3(x,y) = 5.2[1.25+ cog5.4y)]/[64— 6(3x — 1)?],
Fu(x,y) = 5.2exd—81((x — 0.5)* + (y — 0.5)%)/16]/3,
Fs(x,y) = 5.2exd —81((x — 0.5% — (y — 0.5)?)/4]/3,
Fg(x,y) = 5.2sqr{64 — 81((x — 0.5)* + (y — 0.5)%)]/9 — 2.6.

The set of data points (including 33 points) presented in (Franke, 1979) is used to produce triangles
for comparison. The triangulation of the data set is performed using the max-min criterion proposed by
Lawson (1977) (see Fig. 4).

The interpolation conditions for the test cases are boundary curves and cross-boundary slopes on
the sides of the triangles, taken froRj(x, y) to Fs(x, y) above. The comparison results are shown in
Figs. 5-9. For each case in Figs. 5-9, the surface is shown in two models: wireframe model (left) and
highlight line model (right) (with 11 linear light sources for Figs. 5 and 11, and 20 linear light sources
for the remaining cases). Actually the ones shown on the right side of Fig. 5 are orthographic projections
of the highlight line models ony plane. The wireframe models of the surfaces generated by our method
and Nielson's method have no obvious difference visually, but the highlight line models have obvious
differences.

The results forFs(x, y) are not shown because the surfaces by both methods are satisfactory and they
have no visual difference.

The surfaces produced by both methodsKofx, y) and F»(x, y) are not satisfactory, this is because
the given interpolation conditions are not fine enough for regions with large curvature. We further test
the two methods by increasing the interpolation conditions, i.e., adding new data points into the 33-point
data set. We first add 17 data points into Fig. 4 to form a set of 50 data points. This is done by putting
8 points on the boundary edges and 9 points inside the square. The 9 points put inside the square are

—
Q
\\
\_\\‘ ,
)
— ~—
. e
T " ~~

Fig. 4. Triangulation of 33 points.
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Fig. 5. (A) F1(x, y), (B) by Nielson’s method, (C) by new method.

planted one at a time in the following way: triangulate the current data set, identify the triangle with the
largest area, put a point at the center of the triangle, and then repeat the same process until all the 9 points
are planted. The triangulation of the new data set (50 data points) is shown in Fig. 10.(Foy) and

F>(x, y), the surfaces produced by the two methods over the new triangles are shown in Figs. 11-12.
Note that the highlight line model of the surface generated by our methoB,far y) is visually the

same as the highlight line model &% (x, y). The surfaces produced by both methods fe¢x, y) are

not satisfactory. We then add 67 data points into Fig. 4 to form a set of 100 data points using a similar
approach. The surfaces generated by both methodg,fet y) are shown in Fig. 13. The highlight line

model of the surface generated by our methodAg(x, y) now is visually the same as the highlight line

model of F5(x, y).
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(B}

{c)

Fig. 6. (A) Fa(x, y), (B) by Nielson’s method, (C) by new method.

Table 1

Computation times
Time Fie,y)  Fl,y)  Fa(x,y)  Falx,y)  Fs(x.y)
Original function (A) 44T 36T 38T 36T 38T
Nielson’s method (B) 80T 64T 62T 60T 62T
New method (C) 84T 64T 62T 62T 62T

The computation times for producing the (left) wireframe drawings in Figs. 5-9 are given in Table 1.
Table 1 shows that the computation costs of the new method and Nielson’s method are nearly the same.
In fact, for both methods, the main cost is the computation of the interpolation conditions.
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Fig. 7. (A) F3(x, y), (B) by Nielson’s method, (C) by new method.

Table 2

Maximum errors generated by the three methods using 33 data points

Error F1(x, y) Fa(x, y) F3(x, y) Fa(x, y) F5(x, y) F5(x, y)
Nielson method 2.162e2 1.346e-2 6.101e-3 1.882e-2 2.705e-3 8.498e-4
New method 2.876e2 8.342e-3 2.316e-3 4.704e-3 2.841e-4 2.253e-4
P(x,y) 2.920e-2 8.712e-3 2.200e-3 4.899e-3 3.500e-4 2.584e-4

The interior interpolantP (x, y) defined by (6) is also compared with the new method and Nielson’s
method. The result is that the plots of the interior interpolBit, y) are visually the same as the ones
produced by the new method. As an example, the plots producethyy) for F3(x, y) and F5(x, y)
are shown in Figs. 14-15. Based on the triangulations shown in Figs. 4 and 10, the errors of the three
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Fig. 8. (A) F4(x, y), (B) by Nielson’s method, (C) by new method.

Table 3

Maximum errors generated by the three methods using 50 data points

Error F1(x, y) Fo(x, y) F3(x, y) Fa(x, y) F5(x, y) F5(x, y)

Nielson method 4.528€3 5.601e-3 1.089e-3 3.001e-3 2.170e-4 1.554e-4
New method 9.394e4 2.660e-3 2.078e-4 3.269e-4 2.315e-5 2.621e-5
P(x,y) 8.957e-4 2.875e-3 1.818e-4 3.334e-4 2.446e-5 3.180e-5

methods for interpolating™; (x, y)—Fg(x, y) are given in Tables 2 and 3, respectively. Tables 2 and 3
show thatPr (x, y) (7) has generally better precision tha&ix, y) (6).
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Fig. 9. (A) F5(x, y), (B) by Nielson’s method, (C) by new method.

Using the above examples we have also compared the two weight functions defined by (8) and (9).
The test results show that they produce similar results. The reason is because either case would make
P(x, y) the dominant factor in determining the value and, consequently, the shap€xqfy).

6. Conclusions

A new method to construcC! triangular patches by combining four interpolation operators is
presented. The interpolation operators include an interior interpolation operator and three Nielson
type side-vertex interpolation operators. The interior interpolation operator has a better approximation
precision on the interior of the triangular domain than the side-vertex interpolation operators. Since the
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Fig. 10. Triangulation of 50 points. Fig. 11. Interpolants td (x, y), (B) by Nielson’s method, (C) by
new method.
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Fig. 12. Interpolants taF»(x, y), (B) by Nielson’s method, Fig. 13. Interpolants té&»(x, y), (B) by Nielson’s method,
(C) by new method. (C) by new method.
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Fig. 14. Interior interpolation surface @& (x, y).

Fig. 15. Interior interpolation surface &k(x, y).

interior interpolation operator plays a dominant role in the combination process, the resulting triangular
patch has better approximation precision than the one produced by Nielson’s approach. Our test results
also show that the surfaces produced by the new method are visually smoother than the ones produced
by Nielson’s approach.

The new method can be easily extended to constfddriangular patches as well—simply replace
Nielson’s side-vertex interpolation operators with Hagen’s operators (Hagen, 1986). The constructed
triangular patch in this case reproduces polynomial surfaces of degree six.

It seems possible to generalize this method to cover parametric triangular patches. The main concern is
how to apply the scheme for the parametric case while holding the interpolation precision of the scheme
unchanged. This will be a future research work in this direction.
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