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Abstract

A new method for constructing triangular patches is presented. A triangular patch that interpolates given
boundary curves and cross-boundary slopes is formed by blending three traditional side-vertex interpolation
operators (Nielson, 1979) with a new,interior interpolation operator.The new operator is the solution of an
interpolation process that interpolates both the interior and the boundary of the triangular domain. The interior
interpolation operator has better approximation precision on the interior of the triangle than the side-vertex
operators. The constructed triangular patch reproduces polynomial surfaces of degree four. Comparison results
of the new method with the side-vertex method (Nielson, 1979) are included.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the fields of CAD and free-form surface modeling, the construction of surfaces plays an important
role. To make the process of constructing complex surfaces simple, piecewise techniques are frequently
used, with four-sided and triangular patches being the most popular choices. This paper discusses the
process of constructing a curved triangular patch that interpolates given boundary curves and cross-
boundary slopes.

The first smooth interpolant to boundary curves of a triangle was proposed by Barnhill, Birkhoff and
Gordon (1973). The triangular patch is constructed using theBoolean sum scheme.After their method,
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several other papers have discussed the boundary curve interpolation problem for triangular patches.
Gregory (1974) introduced theconvex combination methodinto computer aided geometric design and
the idea was further developed in papers (Charrot and Gregory, 1984; Gregory, 1983). To construct a
triangular patch, three interpolation operators each of which satisfies the interpolation conditions on two
sides of a triangle are constructed, the combination of the three interpolation operators forms the curved
triangular patch.

Nielson (1979) presented aside-vertex method forconstructing a curved triangular patch using
combination of three interpolation operators, each satisfying the given interpolation conditions at a
vertex and its opposite side. Based on operators similar to Nielson’s approach, Hagen (1986) developed
a method for constructinggeometric surface patches.These results have been generalized to triangular
surface patches with first and second order geometric continuity (Hagen, 1989; Nielson, 1987). The
method in (Foley and Opitz, 1992) is developed forscattered data interpolation.Its conversion process
works for constructing curved triangular patches. The problem of constructing curved triangular patches
is also studied in (Kuriyama, 1994; Varady, 1991; Zhang et al., 1993).

The common point of the methods (Charrot and Gregory, 1984; Gregory, 1974, 1983; Hagen, 1986;
Nielson, 1979) is that three interpolation operators are used to construct a curved triangular patch
and these interpolation operators consider interpolation conditions on the boundary of the triangular
domain only. This paper presents a method to construct a curved triangular patch by combining four
interpolation operators: aninterior interpolation operatorand threeside-vertex operators(Nielson,
1979). The construction of the new interpolation operator is different from traditional interpolation
operators in that interpolation conditions are not only set for the boundary but also the interior of the
triangular domain. This is achieved by requiring three quartic curves (actually, surfaces) to be tangent to
a plane at their intersection point. This is a new approach in surface construction. While the side-vertex
operators have better approximation precision for areas close to the boundary edges of the triangle,
the interior interpolation operator has better approximation precision for the interior of the triangle.
The constructed triangular patch satisfiesC1 boundary condition and reproduces polynomial surfaces
of degree four. The new method can also be extended to constructC2 triangular patches by replacing
Nielson’s side-vertex operators with Hagen’s interpolation operators (Hagen, 1986).

The rest of the paper is arranged as follows. In Section 2, the problem to be studied is formulated
and the basic idea of the new method is described. In Section 3, the construction process of the interior
interpolation operator using three quartic curves is described. The construction of a triangular patch by
combining four interpolation operators is discussed in Section 4. Comparison results of the new method
with Nielson’s approach (1979) are shown in Section 5. The concluding remarks are given in Section 6.

2. Problem formulation and basic idea

Let T be a triangle with verticesvi = (xi, yi), i = 1,2,3, in thexy-plane, andei denote the opposite
side ofvi , as shown in Fig. 1. The goal here is to construct a functionPT (x, y) on the triangular domain
T that interpolates givenC1 boundary curves and cross-boundary slopes. Without loss of generality, we
shall assume that the given boundary curves and cross-boundary slopes are taken from aC1 function
F(x, y) defined onT . The constructed triangular function would reproduce polynomial surfaces of
degree four, that is, ifF(x, y) is a polynomial surface of degree four onT and if PT (x, y) agrees with
F(x, y) and its cross-boundary slopes on the bounding edges ofT , thenPT (x, y) = F(x, y) onT .
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Fig. 1. Area coordinates with respect toT .

The construction process ofPT (x, y) consists of two steps. First, aninterior interpolation operator
P(x, y) defined onT is constructed. The construction of this interpolation operator is to ensure that the
interior shape of the resulting triangular patch is also a consideration factor in the construction process of
the triangular patch.P(x, y) interpolates the given boundary curves but may not interpolate the given
cross-boundary slopes. The desired triangular patchPT (x, y) is then formed by combiningP(x, y)

with threeside-vertex operatorsdefined by Nielson (1979). In addition to ensuring that the required
interpolation conditions are satisfied by the constructed triangular patch, the combination process is also
arranged in a way so that the shape ofPT (x, y) is primarily determined byP(x, y), while the side-vertex
operatorsNi(x, y), i = 1,2,3, are mainly used as transition surface patches to make the connection of
PT (x, y) with adjacent surface patches smooth.

Barycentric coordinates will be used in this work to construct the triangular patchPT (x, y). Given
a pointq of T , the barycentric coordinates ofq with respect toT (see Fig. 1), denoted(L1,L2,L3),
satisfy the following properties: (1)Li is a linear function with value one atvi and zero along the sideei ;
(2) q = L1v1 + L2v2 +L3v3.

3. Interior interpolation operator

The construction of the interior interpolation operator is based on that of three quartic curves. The
construction of these quartic curves is described first.

3.1. Constructing quartic curves

Given an arbitrary pointq = (x, y) of T , let q = (x̄i , ȳi ) be the intersection point of the sideei with
the line that passes throughvi andq, i = 1,2,3, as shown in Fig. 2. If(L1,L2,L3) are the barycentric
coordinates ofq with respect toT , then we haveq1 = L2v2+L3v3

L2+L3
, q2 = L1v1+L3v3

L1+L3
andq3 = L1v1+L2v2

L1+L2
,

respectively.
The direction vector fromvi to q i is denoted byni . The given function values and derivatives along

the directionni at vi andq i are denoted byF(vi),
∂F (vi )

∂ni
, F(q i) and ∂F (qi )

∂ni
, respectively,i = 1,2,3.

Let P(q) = P(x, y) denote the value of the interior interpolation operatorP at q. P(q) = P(x, y)

is to be determined. Nevertheless, we shall assume that the value ofP(q) = P(x, y) is known to us at
this moment so we can use this value and four other values as interpolation conditions to construct a
quartic curvefi(t). The five interpolation conditions areF(vi),

∂F (vi )
∂ni

, P(q), F(q i ) and ∂F (qi )

∂ni
at vi , q

andq i , respectively, as shown in Fig. 3. Let the distances fromvi to q andq i be denoted byti1 andti2,
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Fig. 2. The intersection pointsqi .

Fig. 3. A quartic interpolation curve.

respectively, then the quartic curvefi(t) that interpolates the above five interpolation conditions can be
defined as follows:

fi(t) = Ni(t) + [
P(q)− Ni(ti1)

] t2(t − ti2)
2

t2
i1(ti1 − ti2)

2
, i = 1,2,3, (1)

wheret is the parameter andNi(t) are Nielson’s Hermite (side-vertex) interpolation operators (Nielson,
1979),

Ni(t) = H0

(
t

ti2

)
F(vi) +H1

(
t

ti2

)
ti2

∂F (vi )

∂ni

+ H2

(
t

ti2

)
F(q i) + H3

(
t

ti2

)
ti2

∂F (q i)

∂ni

, (2)

with

H0(s) = (s − 1)2(2s + 1), H1(s) = (s − 1)2s,

H2(s) = s2(−2s + 3), H3(s) = s2(s − 1),
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being cubic Hermite basis functions on[0,1].
The quartic curvefi(t), i = 1,2,3, satisfies the following interpolation conditions:

fi(0) = F(vi),
dfi(0)

dt
= ∂F (vi )

∂ni

;
fi(ti1) = P(q);
fi(ti2) = F(q i),

dfi(ti2)

dt
= ∂F (q i)

∂ni

.

The unknownP(q) = P(x, y) is the intersection point of the curvesf1(t), f2(t) and f3(t) at q. Its
value is determined by requiring these curves to be tangent to the same plane atq. The solution will be
discussed in Section 3.2.

Note: As q = (x, y) being an arbitrary point ofT , fi(t) andNi(t) are actually surfaces. Whent takes
on the value ofti1, one gets two surfacesP(x, y) andNi(x, y) from (1) and (2), respectively.

3.2. Constructing interior interpolation operator

As ti1/ti2 = 1−Li , the derivative offi(t) defined in (1) along the directionni at pointt = ti1 is

dfi(ti1)

dt
= P(q)Ai − Bi, (3)

where

Ai = 2(2Li − 1)

Li(1−Li)
ti2,

(4)

Bi = Ni(ti1)Ai − dNi(ti1)

dt
with

Ni(ti1) = Ni(x, y) = H0(1−Li)F (vi )+ H1(1− Li)ti2
∂F (vi)

∂ni

+H2(1−Li)F (qi )+ H3(1− Li)ti2
∂F (q i)

∂ni

,

dNi(ti1)

dt
= dNi(x, y)

dt
= H ′

0(1−Li)
F (vi)

ti2
+ H ′

1(1− Li)
∂F (vi )

∂ni

+H ′
2(1−Li)

F (qi )

ti2
+ H ′

3(1− Li)
∂F (q i)

∂ni

.

The unknownP(x, y) is the intersection point of these curves atq. Its value is determined by requiring
f1(t), f2(t) andf3(t) to have the same tangent plane atq. Namely, by solving the following equation[(

df1(ti1)

dn1
× df2(ti1)

dn2

)
· df3(ti1)

dn3

]
= 0 (5)

where(a × b) denotes the cross product of vectorsa andb, [a.b] is the dot product of vectorsa andb.
The solution of (5) is

P(x, y) = K1(x, y)B1 + K2(x, y)B2 + K3(x, y)B3

K1(x, y)A1 + K2(x, y)A2 +K3(x, y)A3
, (6)
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where

K1(x, y) = L1(x1 − x2) +L3(x3 − x2)

t22(L1 + L3)

L1(y1 − y3)+ L2(y2 − y3)

t32(L1 +L2)

− L1(x1 − x3)+ L2(x2 − x3)

t32(L1 + L2)

L1(y1 − y2) +L3(y3 − y2)

t22(L1 +L3)
,

K2(x, y) = L1(x1 − x3) +L2(x2 − x3)

t32(L1 + L2)

L2(y2 − y1)+ L3(y3 − y1)

t12(L2 +L3)

− L2(x2 − x1)+ L3(x3 − x1)

t12(L2 + L3)

L1(y1 − y3) +L2(y2 − y3)

t32(L1 +L2)
,

K3(x, y) = L2(x2 − x1) +L3(x3 − x1)

t12(L2 + L3)

L1(y1 − y2)+ L3(y3 − y2)

t22(L1 +L3)

− L1(x1 − x2)+ L3(x3 − x2)

t22(L1 + L3)

L2(y2 − y1) +L3(y3 − y1)

t12(L2 +L3)
,

andAi , andBi , i = 1,2,3, are defined in (4). Note that from (4) and (6) it is easy to see thatP(x, y) is
indeed a function ofx andy. P(x, y) is called aninterior interpolation operator.

Theorem 1. P(x, y) defined by(6) interpolates the given boundary curves ofT , and reproduces
polynomial surfaces of degree four.

Proof. By symmetry, it is sufficient to show thatP(x, y) interpolates the given boundary curve one3

only. Fore3, we haveL3 = 0 and

N1(x, y) = N2(x, y),

dN1(x, y)

dt
= −dN2(x, y)

dt
,

K1(x, y) = K2(x, y),

A1 = −A2,

B1 = −B2.

Thus

P(x, y)|L3=0 = B3

A3

∣∣∣∣
L3=0

= N3(x, y)|L3=0.

SinceN3(x, y) satisfies the given interpolation conditionF(x, y) onL3 = 0, one getsP(x, y) = F(x, y).
If F(x, y) is a quartic polynomial, thenF(x, y) is a quartic curve along theni direction. A quartic

curve can be determined by five interpolation conditions uniquely. Therefore, with the fact thatP(x, y) =
F(x, y) in (1),fi(t) would be exactly the same asF(x, y) along theni direction and, consequently, would
be tangent to the tangent plane of the surfaceF(x, y) at t = ti1, i = 1,2,3. The solution of Eq. (5) is
unique, so we haveP(x, y) = F(x, y) for any(x, y) of T . This completes the proof of the theorem.✷

It can be shown that, in general,P(x, y) defined by (6) does not interpolate the given cross-boundary
slopes ofT . The process of constructing aC1 triangular patch onT will be discussed in the next section.
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However, it should be pointed out that if aC0 triangular patch is all we need, thenfi(t) can be defined
as follows

fi(t) = Ni(t) + [
P(q)− Ni(ti1)

] t (t − ti2)

ti1(ti1 − ti2)
,

where

Ni(t) =
(

1− t

ti2

)
F(vi) + t

ti2
F(q i).

In this case,P(x, y) defined by (6) reproduces polynomial surfaces of degree two.

4. Construction of C1 triangular patch on T

In this section we discuss the construction process of aC1 triangular function patch using combination
of four interpolation operators.

In (2), whent takes on the value ofti1, one gets threesurface patchesN1(x, y), N2(x, y) andN3(x, y).
The side-vertex interpolation operatorNi(x, y) satisfies the given interpolation conditions onei . Hence,
the shape ofNi(x, y) in the area close toei is dominated by the given interpolation conditions.P(x, y), on
the other hand, is constructed to reproduce polynomial surfaces of degree four. It has better approximation
precision thanNi(x, y) on the interior ofT , in terms of error in the associated Taylor series. The
triangular patchPT (x, y) on T will be constructed in a way so that along and near the sideei , Ni(x, y)

has a bigger influence onPT (x, y), while in the interior ofT , P(x, y) has a bigger influence onPT (x, y).
PT (x, y) is defined as follows:

PT (x, y) = w1N1(x, y) +w2N2(x, y) + w3N3(x, y) + wcP (x, y), (7)

where

w1 = L2
2L

2
3/Wt ,

w2 = L2
3L

2
1/Wt ,

w3 = L2
1L

2
2/Wt , (8)

wc = 27L1L2L3/Wt ,

Wt = L2
2L

2
3 + L2

3L
2
1 + L2

1L
2
2 + 27L1L2L3,

Ni(x, y) are defined in (2) and(L1, L2, L3) are the barycentric coordinates ofq = (x, y).
The weight functionsw1, w2 andw3 have properties similar to the ones defined in (Nielson, 1987),

i.e., on the sideei , wi = 1, andwj = wc = 0 whenj 
= i. The value ofwc is bigger thanw1,w2 andw3

for points close to the center of theT . Therefore,P(x, y) has a bigger influence on the shape ofPT (x, y)

on the interior ofT while Ni(x, y) have bigger influence on the shape ofPT (x, y) for areas close to the
sides ofT .

The factor 27 in the definition ofwc is actually a degree of freedom. Its role is to ensure thatP(x, y)

has a bigger influence onPT (x, y) in the interior ofT . The influence ofwc on the shape ofPT (x, y) has
been examined using the data sets shown in Section 5. The experiment results show that using numbers
bigger than 24 does not improve the result any further, i.e., the shape of the constructed surface visually
has no difference when the number is bigger than 24. Its value is set to 27 because at the center ofT , we
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have 27L1L2L3 = 1. Note that, with 27, we havew1 = w2 = w3 = 1/84 andwc = 81/84 at the center of
T . Hence,P(x, y) indeed would have a bigger influence on the value ofPT (x, y) on the interior ofT .

As the shape ofPT (x, y) is mainly determined byP(x, y), Ni(x, y), i = 1,2,3, can be regarded
as transition surface patches whose roles are to make the connection ofPT (x, y) with adjacent surface
patches smooth.

Theorem 2. The triangular patchPT (x, y) defined by(7) interpolates the given boundary curves and
cross-boundary slopes onT .

Proof. We first prove thatPT (x, y) interpolates the given boundary curves at interior points of the sides
of T . By symmetry, it is sufficient to show thatPT (x, y) satisfies the given interpolation conditions one3

only.
First, note thatL3 = 0 one3. Hence,w1 = w2 = wc = 0 andw3 = 1. Consequently,PT (x, y)|L3=0 =

N3(x, y)|L3=0. Therefore,PT (x, y) interpolates the given boundary curve on the interior ofe3.
Next, we show thatPT (x, y) interpolates the given cross-boundary slope on the interior ofe3. For a

given direction vectorl, let ∂
∂l

denote the first partial derivative with respect tol.
As L3 = 0, we have,

wc|L3=0 = ∂w1

∂l

∣∣∣∣
L3=0

= ∂w2

∂l

∣∣∣∣
L3=0

= 0,

w3|L3=0 = 1.

Thus

∂PT (x, y)

∂l

∣∣∣∣
L3=0

=
{
N3(x, y)

∂w3

∂l
+P(x, y)

∂wc

∂l
+ ∂N3(x, y)

∂l

}∣∣∣∣
L3=0

.

Sincew1 + w2 + w3 +wc = 1, andN3(x, y) andP(x, y) have the same value onL3 = 0, one gets
{
N3(x, y)

∂w3

∂l
+ P(x, y)

∂wc

∂l

}∣∣∣∣
L3=0

= N3(x, y)
∂

∂l
(w3 + wc)

∣∣∣∣
L3=0

= N3(x, y)
∂

∂l
(w1 + w2 + w3 + wc)

∣∣∣∣
L3=0

= 0.

Hence,

∂PT (x, y)

∂l

∣∣∣∣
L3=0

= ∂N3(x, y)

∂l

∣∣∣∣
L3=0

.

So,PT (x, y) interpolates the given boundary curves and cross-boundary slopes on the three sides ofT

except the three vertices ofT .
On the other hand, it is easy to see thatN1(x, y), N2(x, y), N3(x, y) andP(x, y) interpolate the given

function values and first derivatives at the vertices ofT . So, their combinationPT (x, y) interpolates the
given function values and first derivatives at the vertices ofT as well.

Consequently,PT (x, y) interpolates the given boundary curves and cross-boundary slopes on the three
sides ofT . This completes the proof of the theorem.✷
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Remark. N1(x, y), N2(x, y), N3(x, y) andP(x, y) are (at least)C1 continuous onT and interpolates
the given function value and first derivatives at the vertex(x1, y1) of T . So, for anyε > 0, there isδ > 0,
such that when|x1 − x| < δ and|y1 − y| < δ, we have∣∣∣∣∂

nP (x, y)

∂ln
− ∂nF (x1, y1)

∂ln

∣∣∣∣ < ε, n = 0,1

and ∣∣∣∣∂
nNi(x, y)

∂ln
− ∂nF (x1, y1)

∂ln

∣∣∣∣ < ε, n = 0,1, i = 1,2,3,

respectively, where∂
∂l

denotes the first partial derivative with respect tol. Consequently, together with
the proof of Theorem 2 above, one gets thatPT (x, y), the convex combination ofN1(x, y), N2(x, y),

N3(x, y) andP(x, y), is C1 continuous at and in the vicinity of(x1, y1) of T . Similarly, PT (x, y) is C1

continuous at and in the vicinity of(x2, y2) and(x3, y3) of T . Therefore, the surface patchPT (x, y) is C1

continuous onT . ✷
AsNi(x, y), i = 1,2,3, can only reproduce cubic polynomials, the polynomial interpolation precision

of PT (x, y) is one degree lower thanP(x, y). One can makePT (x, y) have the same polynomial
interpolation precision asP(x, y) by definingwi, i = 1,2,3, andwc as follows:

w1 = c1L
2
2L

2
3/Wt,

w2 = c2L
2
3L

2
1/Wt,

w3 = c3L
2
1L

2
2/Wt, (9)

wc = 27(1+ c1 + c2 + c3)L1L2L3/Wt ,

Wt = c1L
2
2L

2
3 + c2L

2
3L

2
1 + c3L

2
1L

2
2 + 27(1+ c1 + c2 + c3)L1L2L3,

where

ci =
∫
ei

{
∂P (x, y)

∂τi
− ∂F (x, y)

∂τi

}2

dei

is an integral along the sideei , with τi being the unit outward normal vector ofei . If F(x, y) is a
polynomial of degree four, we haveci = 0, i = 1,2,3. Consequently,PT (x, y) = P(x, y).

5. Experiment

In the design of free-form surfaces, isophotes (Poeschl, 1984), reflection lines (Klass, 1980) and
highlight lines (Beier and Chen, 1994) have been proved to be effective tools in assessing the quality
of a surface. In this section, the highlight line model is used to compare the new method with Nielson’s
approach (Theorem 3.1 of (Nielson, 1979)) that interpolate both the boundary curves and cross-boundary
slopes. Nielson’s approach reproduces cubic polynomial surfaces. The weight functions for the new
method are defined by (8). Six bi-variate functions proposed by Franke (1979) are used in the comparison
process. They are
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F1(x, y) = 3.9exp
[−0.25(9x − 2)2 − 0.25(9y − 2)2

]
+ 3.9exp[−(9x + 1)2/49− (9y + 1)/10

]
+ 2.6exp

[−0.25(9x − 7)2 − 0.25(9y − 3)2
]

− 1.04exp
[−(9x − 4)2 − (9y − 7)2],

F2(x, y) = 5.2exp
[
18y − 18x]/(9exp[18y − 18x] + 9

)
,

F3(x, y) = 5.2
[
1.25+ cos(5.4y)

]
/
[
64− 6(3x − 1)2],

F4(x, y) = 5.2exp
[−81

(
(x − 0.5)2 + (y − 0.5)2)/16

]
/3,

F5(x, y) = 5.2exp
[−81

(
(x − 0.5)2 − (y − 0.5)2)/4

]
/3,

F6(x, y) = 5.2sqrt
[
64− 81

(
(x − 0.5)2 + (y − 0.5)2

)]
/9− 2.6.

The set of data points (including 33 points) presented in (Franke, 1979) is used to produce triangles
for comparison. The triangulation of the data set is performed using the max-min criterion proposed by
Lawson (1977) (see Fig. 4).

The interpolation conditions for the test cases are boundary curves and cross-boundary slopes on
the sides of the triangles, taken fromF1(x, y) to F6(x, y) above. The comparison results are shown in
Figs. 5–9. For each case in Figs. 5–9, the surface is shown in two models: wireframe model (left) and
highlight line model (right) (with 11 linear light sources for Figs. 5 and 11, and 20 linear light sources
for the remaining cases). Actually the ones shown on the right side of Fig. 5 are orthographic projections
of the highlight line models onxy plane. The wireframe models of the surfaces generated by our method
and Nielson’s method have no obvious difference visually, but the highlight line models have obvious
differences.

The results forF6(x, y) are not shown because the surfaces by both methods are satisfactory and they
have no visual difference.

The surfaces produced by both methods forF1(x, y) andF2(x, y) are not satisfactory, this is because
the given interpolation conditions are not fine enough for regions with large curvature. We further test
the two methods by increasing the interpolation conditions, i.e., adding new data points into the 33-point
data set. We first add 17 data points into Fig. 4 to form a set of 50 data points. This is done by putting
8 points on the boundary edges and 9 points inside the square. The 9 points put inside the square are

Fig. 4. Triangulation of 33 points.
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Fig. 5. (A)F1(x, y), (B) by Nielson’s method, (C) by new method.

planted one at a time in the following way: triangulate the current data set, identify the triangle with the
largest area, put a point at the center of the triangle, and then repeat the same process until all the 9 points
are planted. The triangulation of the new data set (50 data points) is shown in Fig. 10. ForF1(x, y) and
F2(x, y), the surfaces produced by the two methods over the new triangles are shown in Figs. 11–12.
Note that the highlight line model of the surface generated by our method forF1(x, y) is visually the
same as the highlight line model ofF1(x, y). The surfaces produced by both methods forF2(x, y) are
not satisfactory. We then add 67 data points into Fig. 4 to form a set of 100 data points using a similar
approach. The surfaces generated by both methods forF2(x, y) are shown in Fig. 13. The highlight line
model of the surface generated by our method forF2(x, y) now is visually the same as the highlight line
model ofF2(x, y).
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Fig. 6. (A)F2(x, y), (B) by Nielson’s method, (C) by new method.

Table 1
Computation times

Time F1(x, y) F2(x, y) F3(x, y) F4(x, y) F5(x, y)

Original function (A) 44T 36T 38T 36T 38T
Nielson’s method (B) 80T 64T 62T 60T 62T
New method (C) 84T 64T 62T 62T 62T

The computation times for producing the (left) wireframe drawings in Figs. 5–9 are given in Table 1.
Table 1 shows that the computation costs of the new method and Nielson’s method are nearly the same.
In fact, for both methods, the main cost is the computation of the interpolation conditions.
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Fig. 7. (A)F3(x, y), (B) by Nielson’s method, (C) by new method.

Table 2
Maximum errors generated by the three methods using 33 data points

Error F1(x, y) F2(x, y) F3(x, y) F4(x, y) F5(x, y) F5(x, y)

Nielson method 2.162e−2 1.346e−2 6.101e−3 1.882e−2 2.705e−3 8.498e−4
New method 2.876e−2 8.342e−3 2.316e−3 4.704e−3 2.841e−4 2.253e−4
P(x, y) 2.920e−2 8.712e−3 2.200e−3 4.899e−3 3.500e−4 2.584e−4

The interior interpolantP(x, y) defined by (6) is also compared with the new method and Nielson’s
method. The result is that the plots of the interior interpolantP(x, y) are visually the same as the ones
produced by the new method. As an example, the plots produced byP(x, y) for F3(x, y) andF5(x, y)

are shown in Figs. 14–15. Based on the triangulations shown in Figs. 4 and 10, the errors of the three
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Fig. 8. (A)F4(x, y), (B) by Nielson’s method, (C) by new method.

Table 3
Maximum errors generated by the three methods using 50 data points

Error F1(x, y) F2(x, y) F3(x, y) F4(x, y) F5(x, y) F5(x, y)

Nielson method 4.528e−3 5.601e−3 1.089e−3 3.001e−3 2.170e−4 1.554e−4
New method 9.394e−4 2.660e−3 2.078e−4 3.269e−4 2.315e−5 2.621e−5
P(x, y) 8.957e−4 2.875e−3 1.818e−4 3.334e−4 2.446e−5 3.180e−5

methods for interpolatingF1(x, y)–F6(x, y) are given in Tables 2 and 3, respectively. Tables 2 and 3
show thatPT (x, y) (7) has generally better precision thanP(x, y) (6).
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Fig. 9. (A)F5(x, y), (B) by Nielson’s method, (C) by new method.

Using the above examples we have also compared the two weight functions defined by (8) and (9).
The test results show that they produce similar results. The reason is because either case would make
P(x, y) the dominant factor in determining the value and, consequently, the shape ofPT (x, y).

6. Conclusions

A new method to constructC1 triangular patches by combining four interpolation operators is
presented. The interpolation operators include an interior interpolation operator and three Nielson
type side-vertex interpolation operators. The interior interpolation operator has a better approximation
precision on the interior of the triangular domain than the side-vertex interpolation operators. Since the
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Fig. 10. Triangulation of 50 points. Fig. 11. Interpolants toF1(x, y), (B) by Nielson’s method, (C) by
new method.

Fig. 12. Interpolants toF2(x, y), (B) by Nielson’s method,
(C) by new method.

Fig. 13. Interpolants toF2(x, y), (B) by Nielson’s method,
(C) by new method.
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Fig. 14. Interior interpolation surface ofF3(x, y).

Fig. 15. Interior interpolation surface ofF5(x, y).

interior interpolation operator plays a dominant role in the combination process, the resulting triangular
patch has better approximation precision than the one produced by Nielson’s approach. Our test results
also show that the surfaces produced by the new method are visually smoother than the ones produced
by Nielson’s approach.

The new method can be easily extended to constructC2 triangular patches as well—simply replace
Nielson’s side-vertex interpolation operators with Hagen’s operators (Hagen, 1986). The constructed
triangular patch in this case reproduces polynomial surfaces of degree six.

It seems possible to generalize this method to cover parametric triangular patches. The main concern is
how to apply the scheme for the parametric case while holding the interpolation precision of the scheme
unchanged. This will be a future research work in this direction.
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