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Abstract—Polarimetric synthetic aperture radar (PolSAR) im-
age classification, an important technique in the remote sensing
area, has been deeply studied for a couple of decades. In order to
develop a robust automatic or semiautomatic classification system
for PolSAR images, two important problems should be addressed:
1) incorporation of spatial relations between pixels; 2) estimation
of the number of classes in the image. Therefore, in this paper, we
present a novel superpixel-based classification framework with an
adaptive number of classes for PolSAR images. The approach is
mainly composed of three operations. First, the PolSAR image is
partitioned into superpixels, which are local, coherent regions and
preserve most of the characteristics necessary for image informa-
tion extraction. Then, the number of classes and each class center
within the data are estimated using the pairwise dissimilarity in-
formation between superpixels, followed by the final classification
operation. The proposed framework takes the spatial relations
between pixels into consideration and makes good use of the inher-
ent statistical characteristics and contour information of PolSAR
data. The framework is capable of improving the classification
accuracy, making the results more understandable and easier for
further analyses, and providing robust performance under various
numbers of classes. The performance of the proposed classification
framework on one synthetic and three real data sets is presented
and analyzed; and the experimental results show that the frame-
work provides a promising solution for unsupervised classification
of PolSAR images.

Index Terms—Number-of-classes (NoC) estimation, polari-
metric synthetic aperture radar (PolSAR) images, superpixel,
unsupervised classification.

I. INTRODUCTION

THE SYNTHETIC aperture radar (SAR) system provides
a day-or-night, all-weather means of remote sensing and

produces high-resolution images of the land under illumination
of radar beams. Polarimetric SAR (PolSAR) is the advanced
form of SAR and focuses on emitting and receiving polarized
radar waves to characterize observed land covers and targets.
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In the last two decades, researches have shown that
PolSAR is capable of providing more useful information than
single polarization cases in target detection [1], [2], terrain
classification [3], parameter inversion [4], topography extrac-
tion [5], and so on. Nowadays, several spaceborne platforms,
such as TerraSAR-X, RADARSAT-2, and ALOS-PALSAR,
continuously provide enormous amount of PolSAR data. It
is ineffective to interpret these large volumes of highly com-
plicated images manually. Therefore, developing automatic or
semiautomatic systems for PolSAR image interpretation and
information mining is urgently required and widely studied.

In this paper, we focus on terrain classification for
PolSAR images, which is arguably the most important ap-
plication of PolSAR [6] and fundamental to exploiting the
enormous amount of PolSAR data. It is a key requirement
in both military and civil sectors, a highly desired goal for
developing intelligent databases and also a necessary process
for target detection and recognition. Many algorithms have been
developed for supervised and unsupervised classification for
the last two decades. Techniques, such as image processing,
physical scattering analysis, and statistical analysis, are applied
for PolSAR image classification. A detailed overview can be
found in [6], [7], and Section II of this paper.

In these developed classification methods, although pixel-
based classification methods have achieved great results, due
to speckle noise, the traditional pixel-based classification still
has some drawbacks [8]–[10]. In contrast, region-based clas-
sification is a promising scheme. Images are first segmented
into many homogeneous regions. The following classification
is based on regions instead of pixels. Though region-based
approach can achieve improved and more understandable clas-
sification results, it relies on the accuracy of segmentation to
a great extent. Imprecise segmentation can cause information
loss, even lead to incorrect classification results. Until now,
automatic segmentation for PolSAR images is still a challeng-
ing task. Many studies have been carried out on this topic
recently. Related segmentation methods for PolSAR images
are overviewed in Section II. In this paper, based on the idea
of superpixel, we add inherent statistical characteristics of
PolSAR data into the contour information, use the normalized
cuts, and propose a superpixel-based classification method for
PolSAR images.

In addition to incorporation of spatial relations between
neighboring pixels, another problem in unsupervised classi-
fication for PolSAR images is that the number of classes
is generally unknown, and it will affect the performance
of classification algorithms greatly [11], [12]. In this paper,
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based on the generated superpixels, we propose a precluster-
ing number-of-classes (NoC) estimation scheme for PolSAR
images.

Therefore, in this paper, we present a novel superpixel-based
classification framework with an adaptive number of classes
for PolSAR images. We first calculate the edge maps, based on
which the superpixels are generated. Then, the NoC estimation
operation estimates the number of classes within the image and
extracts each class center, followed by the final classification
operation. The proposed framework has several advantages as
follows.

— The framework is based on superpixels instead of in-
dividual pixels. Hence, it takes the spatial relations
between pixels into account, which makes the classi-
fication process more effective and the results more
understandable.

— The framework incorporates the merits of graph partition-
ing schemes, makes good use of the statistical characteris-
tics and contour information of PolSAR data, and improves
the classification accuracy.

— The framework extracts the number of classes from the
data, thus it estimates each class center before the final
classification more accurately. It provides robust perfor-
mance under various numbers of classes, which is very im-
portant for unsupervised classification of PolSAR images.

In this paper, the performance of the proposed framework
is presented and analyzed on one synthetic and three real
experimental PolSAR data sets.

The remainder of this paper is organized as follows.
Section II presents the related work of this paper. Section III
introduces the PolSAR data for completeness. Sections IV–VI
discuss in detail the proposed framework. The implementa-
tion procedures are provided in Section VII. Experiments and
discussions are given in Section VIII. Conclusion appears in
Section IX.

II. RELATED WORK

PolSAR image classification follows three major approaches.
One type of research focuses on analyzing the polarimetric
scattering mechanisms, which has the merits that some infor-
mation about class type is provided. Typical studies include
the classification schemes proposed by van Zyl [13], Cloude
and Pottier [14], and Ferro-Famil et al. [15]. The second type
of algorithm is mainly based on the statistical characteristics
of PolSAR images. For single-look PolSAR data, Kong et al.
[16] derived a maximum likelihood (ML) classifier based on
the complex Gaussian distribution. For multilook PolSAR data
represented in coherence or covariance matrices, Lee et al. [17]
have derived a Wishart distance to classify PolSAR data. The
variants of this method, such as using expectation maximization
schemes [18] and fuzzy decision rules [19], [20], are found in
the literature. In the third category, both the analyses of scat-
tering mechanisms and statistical information are combined.
Lee et al. [21] have used the Cloude-Pottier decomposition to
initialize the iterated Wishart clustering. The related approaches
can be found in [15] and [22].

All these aforementioned algorithms can be categorized as
pixel-based classification, in which each pixel is treated in-
dependently. As pointed out in Section I, pixel-based classi-
fication methods still have some limitations. The inclusion of
contextual information in the statistical decision concerning
class membership is reasonable. It can improve classification
accuracy and result understandability.

A common way to include spatial relations between pixels
is to model the labeling process as a Markov random field
(MRF) [23], [24]. Dong et al. [25] proposed a segment-based
classification method for PolSAR images based on the Gaussian
MRF model; and Wu et al. [9] introduced a region-based
classification scheme for PolSAR images based the Wishart
MRF (WMRF) model.

Other approaches for integrating contextual information can
be found in the literature. Reigber et al. [8] presented an ap-
proach for incorporating spatial context called probabilistic la-
bel relaxation. Hoekman et al. [26] and Li et al. [10] used region
growing technique as an important preprocessing operation
to improve classification accuracy and increase computational
efficiency of following steps. Benz and Pottier [27] developed
an object-based analysis method for PolSAR data using the
eCognition software. It is worth noting that Ersahin et al. [28],
[29] did pioneering research of PolSAR image segmentation
based on spectral graph partitioning and contour information to
realize an object-based classification. The differences between
their work and this paper are discussed detailedly at the end of
Section IV.

In this paper, we oversegment PolSAR images into su-
perpixels to integrate contextual information of neighborhood
and improve classification accuracy. The idea of superpixel is
originally proposed by Ren and Malik [30]. It represents a local,
coherent region, which preserves most of the characteristics
necessary for image information mining, and they are roughly
homogeneous in size and shape just like pixels, particularly the
number of the superpixels is very high and in homogeneous
areas. Hence, they are called as superpixels. It is rather a vivid
description. Superpixels are generated using the normalized
cuts algorithm [31]. Based on the idea of superpixel, Ren and
Malik [30] learned a classification model for segmentation;
and Mori [32] demonstrated using superpixels to improve the
efficiency and accuracy of model search in an image.

As introduced in Section I, the number of classes is a crucial
parameter in the unsupervised classification of PolSAR images
[11], [12], and it can affect the quality of the final classification
map greatly. This topic, however, is not widely studied in the
literature.

Tran et al. [11] and Cao et al. [12] have proposed unsu-
pervised classification with an adaptive number of clusters for
PolSAR images. Their methods are based on agglomerative
hierarchical clustering (AHC) and postclustering validation.
The AHC is applied to homogeneous regions or clusters in the
PolSAR image, generating a dendrogram, from the predefined
maximum number of clusters to the minimum number of clus-
ters. After visiting every level of the dendrogram, the number
of clusters is obtained using a validation function, such as the
pseudo-likelihood information criterion [11] and the data log-
likelihood function [12]. Different from these methods, in this

中国科技论文在线 http://www.paper.edu.cn



LIU et al.: SUPERPIXEL-BASED CLASSIFICATION WITH AN ADAPTIVE NUMBER OF CLASSES 909

paper, we directly estimate the number of classes existing in
the scene and each class center. The advantages and implemen-
tation details of this method are discussed in Section V.

III. POLARIMETRIC SAR DATA

A. Wishart Distribution

For a reciprocal medium illuminated by a monostatic SAR, a
complex scattering vector in the linear basis is

u = [SHH

√
2SHV SVV]

T (1)

where the superscript “T” denotes the matrix transpose.
Most SAR data are multilook-processed for speckle reduc-

tion. The multilook PolSAR data can be represented by a
polarimetric covariance matrix C, and

C =
1

n

n∑
i=1

uiu
∗T
i (2)

where ui denotes the ith sample of vector u, the superscript
“∗” denotes the complex conjugate, and n is the number of
looks.

In homogeneous areas with fully developed speckle and no
texture, the polarimetric covariance matrix C has a complex
Wishart distribution [33]. Let Σ = E{uu∗T}. The probability
density function (PDF) for the covariance matrix C is

pC(C|n,Σ) =
nqn|C|n−q exp

[
−n · Tr(Σ−1C)

]
K(n, q)|Σ|n

K(n, q) =π(
1
2 )q(q−1)Γ(n) . . .Γ(n− q + 1) (3)

where q = 3 for the monostatic SAR on a reciprocal medium
and q = 4 for the bistatic SAR, Tr(·) is the trace of a matrix,
K(n, q) is a normalization factor, and Γ(·) is the gamma
function [17]. Therefore, each point feature in the PolSAR
image is modeled as a complex covariance matrix obeying the
Wishart PDF.

B. Dissimilarity Measures Between Two Regions

Measuring pairwise dissimilarities between two regions in
the PolSAR image is essential to the proposed framework, and
it is used in the edge map calculation and NoC estimation.
Therefore, this subsection discusses the dissimilarity measures
between two regions in the PolSAR image for completeness.

Inspired by [34], the Wishart test statistic is utilized to
measure the pairwise dissimilarities. The problem is formulated
as a likelihood-ratio function to test the equality of center
covariance matrices of two regions. The hypothesis test is

H0 : Σi = Σj versus H1 : Σi �= Σj (4)

where Σi and Σj are the center covariance matrices of the ith
and jth regions, respectively.

Let Θi and Θj be the sample covariance matrix data sets of
the ith and jth regions, respectively. It is assumed that sample

covariance matrices are spatially independent, therefore, the
conditional PDFs of Θi and Θj are

p(Θi|Σi) =

Ni∏
l=1

pCl
(Cl|n,Σi) (5)

p(Θj |Σj) =

Nj∏
l=1

pCl
(Cl|n,Σj) (6)

where Ni and Nj are the numbers of samples in the ith and jth
regions, respectively. The likelihood function under H0 is

LH0
(Σ|Θi,Θj) =

Ni∏
l=1

pCl
(Cl|n,Σ)

Nj∏
l=1

pCl
(Cl|n,Σ) (7)

where Σ = Σi = Σj , and the likelihood function under H1 is

LH1
(Σi,Σj |Θi,Θj)=

Ni∏
l=1

pCl
(Cl|n,Σi)

Nj∏
l=1

pCl
(Cl|n,Σj).

(8)
The ML estimators of Σi, Σj , and Σ are

(1/NSCM)
∑NSCM

l=1 Cl, where NSCM is Ni, Nj , and Ni +Nj

for Σi, Σj , and Σ, respectively. They are derived by taking
the logarithmic derivatives of (7) and (8), and setting them to
zeros.

According to [34] and [12], the dissimilarity measure be-
tween the ith and jth regions can be derived from the likelihood
ratio test. The test statistic is

Q1 =
LH0

(Σ̂|Θi,Θj)

LH1
(Σ̂i, Σ̂j |Θi,Θj)

=

Ni∏
l=1

pCl
(Cl|n, Σ̂)

Nj∏
l=1

pCl
(Cl|n, Σ̂)

Ni∏
l=1

pCl
(Cl|n, Σ̂i)

Nj∏
l=1

pCl
(Cl|n, Σ̂j)

=
|Σ̂i|nNi |Σ̂j |nNj

|Σ̂|n(Ni+Nj)
(9)

where Σ̂i, Σ̂j , and Σ̂ are ML estimators of Σi, Σj , and Σ,
respectively. If the value of Q1 is too low, the null hypothesis
Σi = Σj is rejected. Thus, the dissimilarity measure between
the ith and jth regions can be defined as

DS(Si, Sj)=− 1

n
lnQ1

=(Ni+Nj) ln |Σ̂|−Ni ln |Σ̂i|−Nj ln |Σ̂j | (10)

where Si and Sj represent the ith and jth regions, respec-
tively. Details of the aforementioned derivation can be found
in [12]. The dissimilarity measure DS is symmetric. If i =
j, DS(Si, Sj) has a minimum value, zero. If the ith and
jth regions are more dissimilar, the value of DS(Si, Sj) is
higher.

Assume that Σj is known for hypotheses H0 and H1, the
hypothesis test becomes a general binary hypothesis test for a
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given class j. The test statistic can be given as [18], [35]

Q2 =
LH0

(Σ̂j |Θi)

LH1
(Σ̂i|Θi)

=

Ni∏
l=1

pCl
(Cl|n, Σ̂j)

Ni∏
l=1

pCl
(Cl|n, Σ̂i)

=
|Σ̂i|nNi

|Σ̂j |nNi

exp
{
−nNi ·

(
Tr

(
(Σ̂j)

−1Σ̂i

)
− q

)}
. (11)

If the value of Q2 is too low, the null hypothesis Σi = Σj is
rejected. Correspondingly, the dissimilarity measure between
the ith and jth regions is defined as

DRW(Si, Sj) = − 1

nNi
lnQ2

= ln

(
|Σ̂j |
|Σ̂i|

)
+ Tr

(
(Σ̂j)

−1Σ̂i

)
− q. (12)

Since the revised Wishart (RW) distance DRW(Si, Sj) is not
symmetric, it is modified to [36]

DSRW(Si, Sj) =
1

2
(DRW(Si, Sj) +DRW(Sj , Si))

=
1

2
Tr

(
(Σ̂j)

−1Σ̂i + (Σ̂i)
−1Σ̂j

)
− q. (13)

If i = j, the symmetric RW (SRW) distance DSRW(Si, Sj) has
a minimum value, zero. If the ith and jth regions are more
dissimilar, the value of DSRW(Si, Sj) is higher.

The test on equality of two covariance matrices here is the
Box’s M test. We found that, in the literature, Formont et al.
[37]–[39] have done some excellent work using the Box’s
M test for classifying high-resolution PolSAR images. It is
believed that it is promising to use the Box’s M test and the
corresponding distribution distances in high-resolution PolSAR
image information extraction.

It is worth noting that the dissimilarity measure DRW has
the same form as the Kullback-Leibler (KL) divergence mea-
sure between PolSAR images proposed in [40], and DSRW

has the same form as the symmetrized version of the KL-
divergence measure, since these measures discussed in this
subsection share the same original information, called gener-
alized variance ratio, with the KL-divergence-based measures
introduced in [40].

In this subsection, dissimilarity measures between two re-
gions in the PolSAR image, DS and DSRW, are discussed.
They are both derived from the Wishart distribution, which
incorporates the inherent statistical characteristics of PolSAR
data into the dissimilarity measures. However, for multilook
PolSAR data, the polarimetric covariance matrix C has a com-
plex Wishart distribution, which is based on the assumption that
the real and imaginary parts of complex scattering vector u have
jointly circular Gaussian distribution. This is only satisfied for
homogeneous areas with fully developed speckle and no texture
[6], [41]. Therefore, the dissimilarity measures derived from the
Wishart PDF might not be well adapted to some scenes with
lots of details, such as urban areas in high-resolution PolSAR
images. In that case, dissimilarity measures derived from other

Fig. 1. Edge map calculation filter is characterized by the following parame-
ters. lf is the length of the filter, wf is the width of each subpart of the filter,
df is the spacing between the two subparts, and Δθ is the angular increment
between two filter orientations. There are Nf = π/Δθ filters with the same
parameters lf , wf , and df , but different orientations. The orientation of the filter
is θf = i ·Δθ, i = 0, 1, . . . , Nf − 1. Adopted from [45].

information may be more suitable or complementary, such as
more complicated statistical models [35], [42], scattering mech-
anisms [43], texture, and linear features. This is application and
problem oriented.

IV. SUPERPIXEL GENERATION

A. Calculation of Edge Maps

Inspired by [44] and [45], in the proposed framework, the
edge map of a PolSAR image is calculated by visiting each
pixel of the image sequentially, and applying a set of filters with
different orientations. These filters extract the dissimilarity be-
tween each side of the center pixel, as a measure of probability
of edge and an indicator of edge information in this pixel.

The filter to calculate edge maps is shown in Fig. 1, and it is
controlled by four parameters, the length lf , the width wf , the
spacing df between each side of the center pixel, and the angular
increment Δθ between two filter orientations. Thus, there are
Nf = π/Δθ filters with the same parameters lf , wf , and df , but
different orientations.

The procedures of edge map calculation are described as
follows.

1) Set the parameters lf , wf , and df for the filter.
2) For Nf filters with different orientations, calculate the

dissimilarity DS(θ) between these two regions using (10).
3) Find the maximum DS(θ), Dmax, of the Nf values.
4) Save the orientation θ∗ and the strength Dmax, move to

the next pixel, and continue from Step 2).
Postprocessing of Edge Maps: The aim of edge map post-

processing is to locate the edge elements. We use the oriented
nonmaximal suppression [46], [47], an algorithm frequently
used in image processing and computer vision. For an arbi-
trary pixel p in the image, Dmax(p) denotes the edge strength
calculated using the aforementioned procedures and θ∗(p) is
the corresponding orientation. Find two neighboring values of
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Dmax on either side of p along the line through p perpendicular
to the orientation θ∗(p). If the edge strength of p is greater than
or equal to each of the neighbors’, it can be kept. Otherwise, it is
set to zero. For example, suppose θ∗(p) is equal to 90◦, the edge
strength in the pixel p can be kept only if its value is greater
than or equal to each of the right and left neighbors’. After the
postprocessing, the edge strength in the pixel p is modified to
D∗(p), which is ready to be used in the superpixel generation
operation.

B. Superpixel Generation Based on Edge Maps

In this paper, superpixels are generated to improve the
accuracy, efficiency, and understandability of PolSAR image
NoC estimation and classification. The proposed operation of
superpixel generation uses the normalized cuts algorithm [31]
based on edge maps of PolSAR data.

Normalized Cuts: In the normalized cuts algorithm, Shi and
Malik [31] formulated visual grouping as a graph partition-
ing problem. The basic principle of graph-based partitioning
schemes is to represent a set of points in an arbitrary feature
space using an undirected graph G = {V,E}, where V is for
the vertices and E is for the edges between the vertices. Each
vertex corresponds to a point in the feature space, and the
edge between two vertices, e.g., x and y, is associated with a
weight W (x, y), that indicates the affinity of the pair. Image
segmentation can be formulated as the best partitioning of the
feature space into two regions, A and B, based on the minimum
cut criterion. The cost function cut as follows is minimized:

cut(A,B) =
∑

x∈A,y∈B
W (x, y) (14)

where W (x, y) is the pairwise affinity between x and y.
Since minimizing the cost function in (14) favors cutting

out small and isolated partitions, Shi and Malik [31] proposed
a new measure of partitioning cost. Instead of using value of
total edge weight connecting the two regions, the new measure
defines the partitioning cost as a fraction of the total edge
connections to all the nodes in the graph. It is referred to as
the normalized cut, Ncut, as follows:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)

assoc(B, V )

=
cut(A,B)∑

x∈A,v∈V
W (x, v)

+
cut(B,A)∑

y∈B,v∈V
W (y, v)

(15)

where V = A ∪B, and assoc(A, V ) is the total connection
from nodes in A to all nodes in the graph and assoc(B, V )
is similarly defined. The principle of the normalized cuts algo-
rithm is to minimize the partitioning cost measure Ncut. How
to solve the minimization problem and more details related to
the normalized cuts algorithm can be found in [31].

Calculation of the Weights: The grouping quality of normal-
ized cuts depends heavily on the definition of the weight W
between arbitrary pixels in the image. This procedure is rather
flexible, since different information can be merged into the
weights. Selection and fusion of features are problem oriented.

Fig. 2. Illustration of extracting the dissimilarity information from edge maps.
(a) A subset of an L-band PolSAR image (PauliRGB). (b) Part of the original
image (a) marked by the box; p1 and p2 are in the same class, and p1 and p3 are
in different classes. (c) Edge map of image (b) after the oriented nonmaximal
suppression; somewhere along l2, the value of edge map strength is high, which
suggests that p1 and p3 are in different classes; along l1, the values of edge map
strength are all low, proposing that p1 and p2 are probably in the same class.
Adopted from [48].

In this paper, the inherent statistical characteristics of
PolSAR data are added into the weights. The statistical charac-
teristics of PolSAR data are obtained locally, while the dissimi-
larity matrix is global and represents pairwise distance between
any two pixels of the image. The intervening contour method
introduced in [48] gives us an important inspiration that the
edge information can be used as a bridge between local features
and global dissimilarity matrix. Moreover, edge information
is considered critical and essential in the image segmentation
literature. The basic principle of this method is illustrated in
Fig. 2. The example is obtained using a subset of an L-band
PolSAR image, acquired by the AIRSAR airborne platform in
1991 [49]. The subset image is shown in Fig. 2(a). Fig. 2(b)
shows a magnified part of the subset image in the red box.
We can observe from Fig. 2(b) that pixel p1 is probably in the
same class with p2, and in different classes with p3. Comparing
Fig. 2(c) with (b), the basic principle of defining dissimilarity
measures between arbitrary pixels in the PolSAR image is as
follows: if the value of maximum edge map strength is high,
the dissimilarity measure between these two pixels, e.g., x and
y, should be high, thus the weight for affinity W (x, y) should
be low.

Therefore, the dissimilarity information is computed through
edge maps generated using inherent statistical characteristics
of PolSAR data. The dissimilarity of two pixels based on the
contour information, DC(x, y), is defined as [28], [29], [48]

DC(x, y) =D∗(z∗),

z∗ = argmax
z∈l

D∗(z) (16)

where D∗(·) denotes the strength of edge maps after the ori-
ented nonmaximal suppression, l is the line joining x and y,
and z∗ is the location where the strength of edge maps after the
oriented nonmaximal suppression is maximum along l. Then,
the pairwise affinity is defined using a Gaussian kernel [28],
[29], [31] as follows:

W (x, y) = exp

{
−D2

C(x, y)

2σ2
C

}
(17)

where σC is the scaling parameter for the kernel.
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After the pairwise affinity matrix is calculated, we apply the
normalized cuts algorithm to produce the superpixel map. The
number of superpixels is NS.

As mentioned in Section II, Ersahin et al. [28], [29] have
applied spectral graph partitioning to PolSAR image segmen-
tation. The differences between their work and this paper are
discussed as follows.

1) The way of extracting contour information—In their
work, the strength of contour is obtained through the ori-
entation energy [48], which was originally developed for
gray-level natural images. In our method, the edge maps
are calculated using inherent statistical characteristics. It
is particularly developed and suitable for PolSAR images,
especially in homogeneous areas.

2) The way of calculating pairwise dissimilarities—They
select several channels of PolSAR data, such as power
channels and the magnitude of the copolarized correlation
coefficients. They treat each channel as a gray image
separately and then combine pairwise dissimilarities cal-
culated in each channel. We calculate pairwise dissim-
ilarities in a different way. As we know, PolSAR data
are completely represented by the polarimetric covariance
matrix for homogeneous areas [50]. In order to incor-
porate the full polarimetric information into pairwise
dissimilarities, we use the edge map as a bridge con-
necting local statistical information and global dissimi-
larity information: first, calculate edge maps locally by
testing equality of covariance matrices, and then use the
intervening contour method to consider the dissimilarity
information from the entire image.

3) The way of cutting image—They use the multiclass spec-
tral clustering proposed by Yu and Shi [51] to cut the
image. In their approach, the number of partitions plays
an important role in cutting the image. They considered
the value of the parameter as known or provided by the
user; this may limit practical applications. In our method,
the aim of superpixel generation is to oversegment the
image into many local, coherent regions. The experiments
show that the number of superpixels can be chosen from
a large range; this is more practical.

It is worth mentioning that, in this paper, superpixels are
generated using the normalized cuts algorithm, and they are
roughly homogeneous in size and shape. It is particularly suit-
able for image information extraction in homogeneous areas.
As for more complicated scenes in the future research, such
as urban areas in high-resolution PolSAR images, multi-scale
edge maps, hierarchical segmentation, and spatial adaptivity
should be considered in the oversegmentation process. The size
of segments and the strength of relationships between a pixel
and its neighborhood need to depend on the complexity of
different parts of the whole scene.

V. NUMBER-OF-CLASSES ESTIMATION

The selection of the number of classes is an important and
challenging issue in PolSAR data analysis, and it is crucial in
building a robust automatic/semiautomatic classification sys-
tem for PolSAR images. This topic, however, is not widely

studied in the literature. As mentioned in Section II, Tran et al.
[11] and Cao et al. [12] have proposed PolSAR image clas-
sification with an adaptive number of clusters. Their methods
are based on AHC and postclustering validation. They attempt
to choose the best partition from a set of alternative partitions
based on some predefined criteria.

In contrast, motivated by [52] and [53], in this paper,
we propose a NoC-adaptive classification method based on
preclustering estimation. Since the proposed method attempts
to estimate the number of classes before clustering occurs, we
use the word preclustering to emphasize the characteristics of
the method and to differentiate the method from postclustering-
validation-based methods in [11] and [12]. The proposed
preclustering estimation scheme has some advantages as
follows.

• The preclustering estimation scheme does not require the
data to be clustered first. The postclustering validation
methods in [11] and [12] require the data to be clus-
tered multiple times to generate a dendrogram and then
find the most suitable number of clusters according to
a predefined criterion. Repeated clustering may be time-
consuming, whereas the preclustering estimation scheme
is supposed to be more direct and more efficient in
comparison.

• The preclustering estimation scheme is based on the dis-
similarity matrix, thus, it makes the estimation operation
flexible. Suppose, we need not only the statistical informa-
tion, but also other features, such as the edge information,
to be merged into the estimation, the pairwise dissimilarity
between arbitrary superpixels can be represented by

Dfusion(Si, Sj) = ηSRW ·DSRW(Si, Sj)+ηEM ·DEM(Si, Sj)

= ηSRW ·DSRW(Si, Sj)+ηEM

·Dcor (FEM(Si), FEM(Sj)) (18)

where DSRW and DEM are dissimilarity measures de-
rived from the statistical and edge information, respec-
tively. ηSRW and ηEM are the respective impact factors of
these dissimilarity measures. Dcor is the correlation dis-
tance measure between the feature vectors FEM(Si) and
FEM(Sj), which are histograms of edge maps, calculated
in Section IV-A, of superpixels i and j, respectively.

Fig. 3 shows the flow chart of the proposed automatic
preclustering NoC estimation scheme for PolSAR data, with
a synthetic PolSAR image generated using the Monte Carlo
method introduced in [6, ch. 4.5.2]. The simulation parameters
are taken from a real PolSAR image. The scheme comprises
four steps, which are elaborated as follows.

1) Representation—In order to represent the data structures
within a PolSAR image, pairwise dissimilarity informa-
tion is depicted as an NS ×NS image, where NS is the
total number of superpixels as described in Section IV-B.
The pairwise dissimilarities between arbitrary superpixels
are calculated using DSRW in (13). As shown in Fig. 3,
a superpixel-based PolSAR image, the size of which
is N ×M , is represented by an NS ×NS dissimilarity
image.
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Fig. 3. Illustration of the preclustering estimation operation. A superpixel-based image, the size of which is N ·M , is represented (Rep.) by an NS ·NS

dissimilarity image. After the reordering (Reo.) step, the dissimilarity image is transformed into the reordered dissimilarity image (RDI), which reveals the class
structures and information. The extraction (Ext.) step transforms the RDI into a projection signal, and the number of classes in the data corresponds to the number
of major peaks in the projection signal. The inversion (Inv.) step uses the class information represented in the projection signal to achieve initial class parameters,
and then some superpixels in the image have initial class labels.

2) Reordering—As shown in Fig. 3, unfortunately, the dis-
similarity image cannot clearly illustrate the class infor-
mation within the PolSAR data. In [54], Cattell first used
an image to represent pairwise dissimilarities between
arbitrary objects in a data set and reordered these ob-
jects suitably so that the resulting image is better able
to highlight the potential cluster structure in the data.
Different methods of implementing visual representation
of pairwise dissimilarity information can be found in the
literature. The fundamental principle of these methods is
the reordered dissimilarity image (RDI). Based on the
idea of RDI, by reordering the NS superpixels suitably,
it results in an image, which can stress the potential class
structures in the PolSAR data, as shown in Fig. 3. The
intensity of each point in the RDI corresponds to the
dissimilarity between the pair of superpixels addressed by
the coordinates of this point. A useful RDI can highlight
the potential classes as a set of dark blocks along the di-
agonal of the image, indicating the set of superpixels with
low dissimilarity. In the proposed framework, we use the
visual assessment of cluster tendency (VAT) algorithm
[52] to transform the dissimilarity image into the RDI.
The detailed information about the VAT algorithm can be
found in [52].

3) Extraction—As shown in Fig. 3, the RDI can highlight
the potential classes as a set of dark blocks along the
diagonal of the image. Human can simply read the num-
ber of classes in the RDI. When it comes to computer,
the dark block extraction (DBE) method proposed in [53]
is selected and specially tailored to automatically extract
dark blocks along the diagonal of the RDI. The basic
principle of the DBE method is to extract the number of

classes using several common image and signal process-
ing techniques. The procedures of DBE are described as
follows.
a) Perform image segmentation on the RDI to obtain a

binary image, and then apply the directional morpho-
logical filters to the binary image.

b) Apply a distance transform to the filtered binary im-
age, and then project the pixel values along the main
diagonal axis of the image to form a projection signal.

c) We use a simple average filter to smooth the projection
signal, and then use the first-order derivative of the
smoothed projection signal to detect the major peaks
and valleys of the projection signal. We use a size filter
to remove relatively small peaks. The peak within the
two neighboring valleys will be kept as a meaningful
peak, only if the width between these two neighboring
valleys is larger than γ · Ls, where Ls is the length of
the projection signal, and γ is set to 0.03 experimen-
tally in this paper.

Therefore, the DBE method transforms the RDI into a
1-D projection signal, and the number of classes within
the data corresponds to the number of major peaks in the
projection signal as shown in Fig. 3. For more informa-
tion about the DBE algorithm, one can refer to [53].

4) Inversion—In the projection signal, a peak between two
neighboring valleys realistically represents a class in the
data. After detecting the peaks and valleys in the projec-
tion signal, the inversion step uses the class information
represented in the projection signal to achieve initial
class parameters. Suppose that there are Nx superpixels
between the xth valley and the (x+ 1)th valley. Due to
noise, the inversion step cannot simply determine that all
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Fig. 4. Schematic concept of the proposed superpixel-based classification with an adaptive number of classes for PolSAR images.

the Nx superpixels belong to the xth class. In our method,
the inversion step labels the β ·Nx superpixels nearest to
the xth peak as elements of the xth class, where β is from
0 to 1. The other (1− β) ·Nx superpixels between the
xth valley and the (x+ 1)th valley can be seemed as a
buffer zone. The superpixels in this area are categorized
as undecided, and their labels will be determined in the
final classification.

VI. FINAL CLASSIFICATION

As discussed in Section V, after the operations of superpixel
generation and superpixel-based preclustering NoC estimation,
there are still (1− β) ·NS superpixels categorized as unde-
cided, and their class labels are determined by the final clas-
sification operation. After the superpixel-based preclustering
estimation operation, we get several important initial class
parameters,

• The number of classes in the PolSAR image X;
• The initial classes C1, C2, . . . , CX ;
• The ML estimators of the 1st, 2nd, . . . , Xth class center

covariance matrices.

The determination of class labels is inspired by the iterated
Wishart clustering proposed by Lee et al. [17], [21]. For an
arbitrary superpixel S in the PolSAR image, the estimation of
class label of this superpixel is derived as follows:

x̂S = arg min
x∈{1,2,...,X}

{DW(S,Cx)}

DW(S,Cx) = ln
∣∣∣Σ̂Cx

∣∣∣+Tr
(
Σ̂

−1

Cx
Σ̂S

)
(19)

where DW(S,Cx) is the Wishart distance between superpixel
S and class Cx derived from (3), and it is calculated using the
ML estimators of the center covariance matrices of superpixel
S and class Cx.

According to [17] and [21], iteration can improve the quality
of classification map. We also apply iteration to the final
classification operation to achieve more accurate class label
estimation. The termination criterion is a combination of

1) percentage of number of superpixels switching classes
per iteration PTC;

2) predefined number of iterations NTC.
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VII. IMPLEMENTATION

The presented research aims at providing a robust superpixel-
based NoC-adaptive classification framework for PolSAR im-
ages. The whole processing chain in Fig. 4 consists of four
operations as follows.

1) Preprocessing
a) The single look PolSAR data are multilook-processed.
b) The Lee refined filter [55] is selected and performed,

since it is able to preserve polarimetric properties
and statistical correlation between channels; while this
step is optional.

2) Superpixel generation
a) Calculation of edge maps—The edge information

strength of each pixel in the PolSAR image is mea-
sured by the dissimilarity between both sides of this
pixel with scanning window configuration.

b) Superpixel generation based on edge maps—The
PolSAR image is partitioned into homogeneous seg-
ments based on the edge map using the normalized
cuts algorithm.

3) Preclustering NoC estimation—Using the pairwise dis-
similarities between arbitrary superpixels, the PolSAR
image is represented as a dissimilarity image, which is
reordered into a RDI. The DBE step transforms the RDI
into a projection signal. The class information repre-
sented in the projection signal is extracted to estimate
the number of classes, each class center, and initial class
labels of part of superpixels.

4) Final classification—Class labels of the undecided super-
pixels from the preclustering NoC estimation operation
are determined and refined to get the final classification
map.

After the operations of preprocessing, superpixel genera-
tion, preclustering NoC estimation, and final classification, the
PolSAR image is classified unsupervisedly.

VIII. EXPERIMENTS AND DISCUSSIONS

A. Description of Experimental Data Sets

In this section, the performance of the proposed classification
framework for PolSAR images is presented and analyzed on
one synthetic and three real experimental data sets.

Synthetic Experimental Data Set: The first data set is a syn-
thetic experimental data set. The data set is generated using the
Monte Carlo method motivated by [6, ch. 4.5.2]. The detailed
simulation design will be described in Section VIII-C. The
simulation parameters are taken from a real PolSAR image, and
the center covariance matrices of the nine classes are listed as
follows. The sizes of all synthetic images are 500 × 700. The
corresponding true classification map of the synthetic data set is
shown in Fig. 5(a); and one example simulated image is shown
in Fig. 5(b) (see equation at the bottom of the next page).

Real Experimental Data Sets in Agricultural Areas: The sec-
ond data set is obtained from a subset of an L-band, multilook
PolSAR image, acquired by the AIRSAR airborne platform
in 1991 [49]. The scene covers Flevoland, Netherlands. The
experimental image is shown in Fig. 6(a), the size of which is

Fig. 5. Illustration of the synthetic data set. (a) True classification map of the
synthetic data set. (b) One example simulated image (PauliRGB).

Fig. 6. L-band, multilook PolSAR image in Flevoland, Netherlands in 1991
of AIRSAR platform as the second data set used in the experiment. (a) PolSAR
image (PauliRGB). (b) The ground truth map of (a). (c) Color code.

Fig. 7. L-band, multilook PolSAR image in Flevoland, Netherlands in 1989
of AIRSAR platform as the third data set used in the experiment. (a) PolSAR
image (PauliRGB). (b) The ground truth map of (a). (c) Training data set.
(d) Color code.

430 × 280. The ground truth map is gleaned from [56], and it
is shown in Fig. 6(b). According to the ground truth map, there
are seven classes in the second data set.

The third data set is obtained from a subset of an L-
band, multilook PolSAR image, acquired by the AIRSAR
airborne platform in 1989 [57]. The scene covers Flevoland,
Netherlands, too. The experimental image is shown in Fig. 7(a),
the size of which is 380 × 430. The ground truth map is gleaned
from [3] and [9], and it is shown in Fig. 7(b). According to the
ground truth map, there are seven classes of crops, one class of
grass, and one class of bare soil in the third data set.
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Fig. 8. L-band, multilook PolSAR image in Oberpfaffenhofen, Germany of
ESAR platform as the fourth data set used in the experiment. (a) PolSAR image
(PauliRGB). (b) The ground truth map of (a). (c) Color code.

Real Experimental Data Set in General Areas: The fourth
data set is obtained from an L-band, multilook PolSAR image,
acquired by the ESAR airborne platform [57]. The scene covers
Oberpfaffenhofen, Germany. The fourth experimental image
is shown in Fig. 8(a), the size of which is 1300 × 1200.

For our present purpose, manual classification according to
the corresponding optical remote sensing imagery in Google
Earth is used as the ground truth map, as shown in Fig. 8(b).
According to the ground truth map, the scene is categorized into
three basic classes: built-up areas, wood land, and open areas.

In the second, third, and fourth data sets, pixels without
ground truth or lie near boundaries between classes are cate-
gorized as void. The void pixels are ignored in both training
and testing.

In Section VIII-B, the third data set, which includes nine
classes of land covers and is widely used in the literature,
is selected to test the operation of superpixel generation as a
tool for PolSAR image classification, analyze its performance
under various input parameter configurations, and compare the
superpixel-based classification method with other widely used
classification methods.

In Section VIII-C, the synthetic data set is used to test the
performance of the proposed superpixel-based NoC estimation
method for PolSAR images.

In Section VIII-D, all the real experimental data sets are
utilized to examine and present the performance and reliabil-
ity of the whole superpixel-based NoC-adaptive classification
framework for PolSAR images.

C1 =

⎛
⎝ 0.0045 0.0001j 0.0049− 0.0005j

−0.0001j 0.0004 −0.0001− 0.0001j
0.0049 + 0.0005j −0.0001 + 0.0001j 0.0070

⎞
⎠

C2 =

⎛
⎝ 0.0011 0 0.0014− 0.0003j

0 0.0001 0
0.0014 + 0.0003j 0 0.0024

⎞
⎠

C3 =

⎛
⎝ 0.0037 −0.0002− 0.0001j 0.0030− 0.0014j

−0.0002 + 0.0001j 0.0005 −0.0002 + 0.0002j
0.0030 + 0.0014j −0.0002− 0.0002j 0.0062

⎞
⎠

C4 =

⎛
⎝ 0.0009 0 0.0006− 0.0001j

0 0.0002 0
0.0006 + 0.0001j 0 0.0013

⎞
⎠

C5 =

⎛
⎝ 0.0080 0.0001 + 0.0003j 0.0068− 0.0017j

0.0001− 0.0003j 0.0017 −0.0002
0.0068 + 0.0017j −0.0002 0.0114

⎞
⎠

C6 =

⎛
⎝ 0.0030 −0.0001 + 0.0001j 0.0002− 0.0002j

−0.0001− 0.0001j 0.0006 −0.0001j
0.0002 + 0.0002j 0.0001j 0.0018

⎞
⎠

C7 =

⎛
⎝ 0.0056 −0.0002 + 0.0002j 0.0036

−0.0002− 0.0002j 0.0018 −0.0001− 0.0002j
0.0036 −0.0001 + 0.0002j 0.0055

⎞
⎠

C8 =

⎛
⎝ 0.0018 0 0.0008− 0.0008j

0 0.0003 0
0.0008 + 0.0008j 0 0.0034

⎞
⎠

C9 =

⎛
⎝ 0.0071 0.0002 −0.0013 + 0.0026j

0.0002 0.0010 −0.0001− 0.0001j
−0.0013− 0.0026j −0.0001 + 0.0001j 0.0073

⎞
⎠
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Fig. 9. Superpixel-based classification results on the third data set, and comparison of classification results using different methods. (a) and (b) are edge maps
before and after the oriented nonmaximal suppression, respectively. (c) and (d) are superpixel generation results with 200 and 500 superpixels, respectively. (e) and
(g) are superpixel-based classification method results with 200 and 500 superpixels, respectively. (i) WMRF-based method result. (k) Watershed-based method
result. (m) Pixel-based method result. (f), (h), (j), (l), and (n) are the results without void mask of (e), (g), (i), (k), and (m), respectively.

B. Performance of Superpixel Generation and
Superpixel-Based Classification

In this subsection, we use the third data set, including nine
classes of land covers and widely used in the literature, to
present the results of the superpixel-based classification method
and analyze the performance of superpixel generation under
various choices of input parameters.

In order to test the performance of superpixel generation
as a tool for PolSAR image classification and compare the
superpixel-based classification with other methods, we use
supervised classification in this experiment.

In the preprocessing operation, the PolSAR image is pro-
cessed with the Lee refined filter. For region-based methods,

speckle filters with large window may not be suitable, because
they might blur images and smear edges, which are very impor-
tant in region generation. Hence, in the preprocessing operation,
we use relatively small window, 3 × 3, Lee refined filter for
region-based methods. However, for the pixel-based method, in
case the 3 × 3 Lee refined filter is not enough, we increase the
size of the filter to 7 × 7.

After the operation of superpixel generation, the number of
classes and initial class centers are determined by the training
data set as shown in Fig. 7(c), and the final classification
operation takes the superpixels as elements and uses the Wishart
distance to classify the PolSAR data, as discussed in Section VI.

In this experiment, edge maps before and after the oriented
nonmaximal suppression are illustrated in Fig. 9(a) and (b),
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TABLE I
CLASSIFICATION ACCURACY (%) AS A FUNCTION OF lf AND wf

Fig. 10. Classification accuracy (%) as a function of NS.

respectively. Fig. 9(c) and (d) show the results of superpixel
generation with 200 and 500 superpixels, respectively. The
respective final classification maps are shown in Fig. 9(e)
and (g). The parameters of edge map calculation, df and Δθ,
are set to 1 and π/2, respectively. We mainly test the effects of
parameters lf and wf of edge map calculation, and the number
of superpixels NS here.

Table I lists the classification accuracy under various choices
of edge map calculation parameters lf and wf . The accuracy is
the percentage of image pixels belonging to each class that were
categorized to the correct class. The higher are the values of lf
and wf , the more accurate are the important and obvious edges.
However, if the values of lf and wf are too high, some small
edges might be erased, and it may cause undersegmentation,
which should be avoided.

From the experimental results in Table I, the suitable choices
of values of parameter lf are between 13 and 17, and the suitable
choices of values of parameter wf are between 7 and 9. It is
worth mentioning that lf and wf are set to 15 and 7, respectively,
in Figs. 9 and 10, and Table II.

Fig. 10 shows the classification accuracy under various
choices of the number of superpixels NS, which is determined
by the size and intrinsic complexity of the PolSAR image. If
the value of NS is too low, it might cause undersegmentation
in some area, as comparison of Fig. 9(c) and (d) in blue
circles. However, if the value of NS is too high, large volume
of memory and massive computations are required, and the
characteristics of small superpixels are more easily affected by
speckle.

Since in this paper, we aim at oversegmenting the PolSAR
image into many superpixels, the number of superpixels can be

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (%)

chosen from a large range as illustrated in Fig. 10. It is worth
noting that NS is set to 200 in Tables I and II.

For comparison, classification maps of the proposed
superpixel-based, WMRF-based [9], watershed-based [58], and
pixel-based [17] methods are shown in Fig. 9(e), (i), (k),
and (m), respectively. The WMRF-based method is selected
because it is a novel and effective MRF-based method. The
watershed-based method is chosen since it is frequently used
in image oversegmentation. In these four methods, the PolSAR
data are all preprocessed using the Lee refined filter. In the
WMRF-based and watershed-based methods, the final classi-
fication operation takes the small regions as elements and uses
the Wishart distance, as discussed in Section VI.

Table II lists the classification accuracy obtained by the
aforementioned four classification methods. From Table II, we
conclude that the superpixel-based method outperforms the
other three widely used methods for PolSAR image classifi-
cation. The total accuracy of the proposed method is beyond
99%, which is about 4.5%, 10%, and 5% higher than other three
methods, respectively, since spatial relations between pixels are
taken into consideration, and the statistical characteristics and
contour information of PolSAR data are made good use of.

From the experiment, the pixel-based method has rather good
results. However, as we know, increasing the window size of
filters is not always a suitable solution for terrain classification,
since filters with large window size may blur the image and
smear edges. It is believed that the one advantage of region-
based classification methods is that they can provide satisfac-
tory results in some areas where large window size of filters is
not suitable.

C. Performance of Number-of-Classes Estimation

As discussed in Section V, the NoC estimation is based
on pairwise dissimilarities. Thus, the performance of the NoC
estimation depends on the distances between the covariance
matrices of different class types. In this subsection, we use a
Monte-Carlo-based design to synthesize a scenario with closer
covariance matrices, and then to test the performance and
robustness of the NoC estimation.

Based on the nine center covariance matrices
C1,C2, . . . ,C9 of respective nine class types extracted
from the real PolSAR data, as described in Section VIII-A, we
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use the mixture of these covariance matrices to simulate closer
center covariance matrices, as summarized by the following
Experimental Design.

Experimental Design. Simulation of PolSAR data with
closer covariance matrices

INPUT
• Nine center covariance matrices C1,C2, . . . ,C9 of re-

spective nine class types as described in Section VIII-A.
• True classification map as shown in Fig. 5(a).
• Random mixing coefficient boundary R.
PROCEDURE
1. Compute the overall distance before mixing using

Disbefore =
∑

1≤i<j≤9

DSRW(Ci, Cj). (20)

2. Compute the center covariance matrices of the mixed
classes using

Cmix
x = Cx + (r1 . . . r9)

⎛
⎝C1

...
C9

⎞
⎠ (21)

where x = 1, 2, . . . , 9, and r1, r2, . . . , r9 are nine
uniformly distributed random numbers from 0 to R, for
each x.

3. Compute the overall distance after mixing using

Disafter =
∑

1≤i<j≤9

DSRW

(
Cmix

i , Cmix
j

)
. (22)

4. For given center covariance matrix of each mixed class,
compute (Cmix

x )1/2, where

(
Cmix

x

) 1
2

[(
Cmix

x

) 1
2

]∗T
= Cmix

x . (23)

5. Simulate a complex random vector v; independently gen-
erate the real and imaginary parts of each component
of v that are statistically independent from a normal
distribution with zero mean and 0.5 variance.

6. The complex single-look vector is obtained by

u =
(
Cmix

x

) 1
2 v. (24)

7. Compute the n-look covariance matrix using C =
(1/n)

∑n
i=1 uiu

∗T
i .

OUTPUT
• Simulated PolSAR data according to the true classification

map.
• Overall distances before and after the mixing.
Verification—From [6], polarimetric covariance matrices

C1,C2, . . . ,C9 are Hermitian positive semidefinite ma-
trices. Therefore, we can make sure that the mixtures
Cmix

1 ,Cmix
2 , . . . ,Cmix

9 are also Hermitian positive semidefinite
matrices. The matrix (Cmix

x )1/2 is obtained by using a unitary
transform to diagonalize Cmix

x .

Fig. 11. Illustration of performance of the NoC estimation on simulated
PolSAR data. (a) Average overall distance after the mixing under various
random mixing coefficient boundaries R. (b) Estimation accuracy rate under
various R.

Since the purpose here is to test the performance of NoC
estimation, for all the experiments in this subsection, we use
the same true classification map as shown in Fig. 5(a), and also
the same superpixel map. For each random mixing coefficient
boundary R, we run the simulation process for 100 times and
perform the NoC estimation on these 100 synthetic PolSAR
data. The average overall distances after the mixing and the
estimation accuracy rate are shown in Fig. 11(a) and (b),
respectively.

According to the experimental results illustrated in Fig. 11,
the performance of the NoC estimation is discussed as follows.

• In all the experiments in this subsection, γ is set to 0.03 as
discussed in Section V; and the whole estimation is done
automatically.

• It shows the proposed NoC estimation method can provide
rather good and promising results. The accuracy of NoC
estimation is under 80% only if the covariance matrices
are severely mixed and very close to each other. It also
shows that the performance of NoC estimation relies on
the pairwise dissimilarities greatly. Thus, the performance
of NoC estimation can be improved by incorporating more
suitable or complementary information into the dissimilar-
ity measures, and we will discuss this further in the next
subsection.

D. Performance of the Whole Framework

In this subsection, we use the all the real data sets to test the
performance of the whole processing chain. In the preprocess-
ing operation, the second and third experimental PolSAR im-
ages are processed with 3 × 3 Lee refined filter. For the fourth
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Fig. 12. Results of the whole classification framework on the second data
set. (a) Reordered dissimilarity image. (b) One-dimensional projection signal.
(c) Final classification map. (d) Error map, void in gray and errors in orange.

data set, the speckle noise has been well suppressed, thus, no
more filter is needed. It is worth noting that, in the operation of
superpixel generation, the parameters of edge map calculation
lf , wf , df , and Δθ are set to 15, 7, 1, and π/2, respectively.
After superpixel generation, the number of classes and initial
class centers are estimated by the operation of preclustering
NoC estimation, and then class labels of undecided superpixels
are determined and refined by the final classification operation,
just like the whole implementation procedures discussed in
Section VII and illustrated in Fig. 4.

Real Experimental Data Sets in Agricultural Areas: The per-
formance of the proposed framework on the real experimental
data sets in agricultural areas, the second and the third, is listed
in Figs. 12 and 13 and Tables III and IV.

The reordered pairwise dissimilarity images between arbi-
trary superpixels in the experimental images are shown in
Figs. 12(a) and 13(a). As discussed in Section V, the RDI
highlights the potential classes existing in the PolSAR data as
a set of dark blocks along the diagonal of the image, indicating
the set of superpixels with low dissimilarity. From the RDIs in
Figs. 12(a) and 13(a), the class structures in the experimental
images are depicted.

The operation of preclustering NoC estimation transforms
the RDI to a 1-D projection signal, and the number of classes in
the PolSAR image corresponds to the number of major peaks
in the signal, as shown in Figs. 12(b) and 13(b). Although there
are several very small peaks in the signals in Figs. 12(b) and
13(b), they can easily be eliminated by the smoothing and size
filters as discussed in Section V. The operation of preclustering
NoC estimation determines that there are seven and nine classes
existing in the second and third data sets, respectively, and
the estimations are consistent with the ground truth maps in

Fig. 13. Results of the whole classification framework on the third data set.
(a) Reordered dissimilarity image. (b) One-dimensional projection signal.
(c) Final classification map. (d) Error map, void in gray and errors in orange.

Figs. 6(b) and 7(b). As discussed in Section V, the operation of
preclustering estimation labels the β ·Nx superpixels nearest to
the xth peak as elements of the xth class, where β is set to 0.7
experimentally.

After the preclustering estimation operation, there are still
(1− β) ·NS superpixels categorized as undecided, and their
class labels are determined by the final classification operation.
The termination criterion of the final classification is a com-
bination of the percentage of number of superpixels switching
classes per iteration PTC and a predefined number of iterations
NTC. PTC and NTC are set to 0 and 20, respectively. The final
classification maps are shown in Figs. 12(c) and 13(c).

According to the ground truth maps in Figs. 6(b) and 7(b), the
total accuracy of the whole proposed framework on the second
and third data sets is 98.06% and 99.04%, respectively, and
the respective error maps are shown in Figs. 12(d) and 13(d),
confusion matrices listed in Tables III and IV.

From Fig. 12 and Table III, in the second data set, part of Beet
mistakenly classified as Rape Seed is due to the large within-
class variance of the class Beet; from Fig. 13 and Table IV, in
the third data set, part of Lucerne mistaken as Grass is because
of very small inter-class difference of the classes Lucerne and
Grass. These can be observed from the respective PauliRGB
images in Figs. 6(a) and 7(a).

Real Experimental Data Set in General Areas: The process-
ing chain on the fourth data set is much like the processing on
the second and third data sets as aforementioned. The edge map
after the oriented nonmaximal suppression and superpixel map
are shown in Fig. 14(a) and (b), respectively.

In this experiment, it is worth stressing that information
fusion in the preclustering estimation can achieve better result.

In the NoC estimation, if only the statistical information,
the SRW distance DSRW in (13), is used, the RDI is shown
in Fig. 14(c); the NoC is estimated as three; and the final
classification result is in Fig. 14(e).
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TABLE III
CONFUSION MATRIX (%) OF THE WHOLE CLASSIFICATION FRAMEWORK ON THE SECOND DATA SET

TABLE IV
CONFUSION MATRIX (%) OF THE WHOLE CLASSIFICATION FRAMEWORK ON THE THIRD DATA SET

Fig. 14. Results of the whole classification framework on the fourth data set. (a) The edge map after the oriented nonmaximal suppression. (b) Superpixel map.
(c) The RDI from statistical information only. (d) The RDI from fusion of statistical and edge information. (e) The final classification map from the NoC estimation
using statistical information only. (f) The final classification map from the NoC estimation using fusion of statistical and edge information. (g) The final result
after using majority vote on (f).
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TABLE V
CONFUSION MATRIX (%) OF THE WHOLE CLASSIFICATION

FRAMEWORK ON THE FOURTH DATA SET

With the distance fusing the statistical information and edge
information Dfusion as described in (18), where ηSRW and ηEM

are set to 1 and 1, respectively, the RDI is shown in Fig. 14(d);
the NoC is estimated as three; and the final classification result
is in Fig. 14(f).

Compare the final classification results in Fig. 14(e) and (f);
though the estimated NoCs are both consistent with the ground
truth map, the final classification result in (f) is better than
result in (e), particularly in some strongly scattered farmland
and built-up areas, such as in areas A, B, and C in Fig. 14(e) and
(f). The experimental results show that, with inclusion of edge
information, the class centers can be estimated more accurately.
Since the edge information is an effective indicator of built-up
areas, the merging of edge information in the NoC estimation
can extend the distances between built-up areas and open areas,
and between built-up areas and wood land.

Since the fourth data set is more complicated than the second
and third data sets, a majority vote is applied to the final
classification map in Fig. 14(f) as postprocessing to generate
the final result, as shown in Fig. 14(g). According to the ground
truth map in Fig. 8(b), the total accuracy of the whole proposed
framework on the fourth data set is 94.42%. Corresponding
confusion matrix is listed in Table V.

For the fourth data set, the image is automatically classified
according to the basic scattering characteristics in general areas.
This automatic operation gives a solid foundation for further
analyses. For each basic land cover type, it can be further
divided, such as what we did in agricultural areas on the second
and third data sets, which is problem and application oriented.

According to the experimental results on the second, third,
and fouth data sets, the performance of the whole processing
chain is discussed as follows.

1) The proposed framework correctly estimates the number
of classes within the PolSAR data.

2) The framework provides an effective and robust solution
for PolSAR image unsupervised classification under var-
ious numbers of classes.

3) Since the framework takes spatial relations between pix-
els into account and makes good use of statistical charac-
teristics and contour information, the classification results
are easy to understand and for further analyses.

IX. CONCLUSION

In this paper, we present a novel superpixel-based classi-
fication framework with an adaptive number of classes for
PolSAR images. First, an edge map is calculated using inherent
statistical characteristics of the PolSAR image, which is then

partitioned into superpixels based on the edge map. Next, the
number of classes is extracted from the data, and each class
center is estimated. Finally, the class labels are determined and
refined using iterated Wishart clustering.

Since the whole framework is based on superpixels, it
takes spatial relationship between pixels into consideration,
and it is robust to speckle noise. The framework makes good
use of the statistical characteristics and contour information
of the PolSAR data. The experimental results show that
the framework improves classification performance and result
understandability.

Estimating the number of classes existing in the PolSAR
image plays a major part in the whole processing chain. The
framework determines the number of classes and each class
center before the final classification and provides a robust
unsupervised classification under various numbers of classes.
The estimation operation is based on superpixel, which makes
it more effective and efficient.

The whole framework is based on pairwise dissimilarities,
which makes the framework rather flexible. It is independent of
the representation of features, as long as a pairwise dissimilarity
matrix is available to represent the relations between arbitrary
feature points in the PolSAR image. Therefore, multiple fea-
tures can be selected and fused into the framework easily.

In the future, the framework needs to be applied on an enor-
mous PolSAR image database to develop a fully operational
procedure and allow users to benefit from the image contents.
Several problems should be considered and addressed: 1) the
number of classes within the image is very large; 2) the relations
among different classes are unbalanced, i.e., some class might
be mistaken as noise for a very small area.

In order to overcome these problems, we consider dividing
the whole scene into several subscenes and then combining
and validating the results of subscenes using some criteria, and
adding spatial adaptivity into the oversegmentation operation.
This will be reflected in our following research.
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