您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者4条结果 成果回收站

上传时间

2007年03月02日

【期刊论文】The distinguished involutions with a-value n2 −3n+ 3 in the Weyl group of type Dn

陈承东, Chen Cheng Dong, Liu Jia Chun

C. Cheng Dong, L. J. Chun. Journal of Algebra 265 (2003) 211-220,-0001,():

-1年11月30日

摘要

Let (W, S) be aWeyl group and H its associated Hecke algebra. Let A = Z[u, u−1] be the Laurent polynomial ring. Kazhdan and Lusztig [Representation of Coxeter groups and Hecke algebras,Invent. Math. 53 (1979) 165–184] introduced two A-bases {Tw}w∈W and {Cw}w∈W for the Hecke algebra H associated to W. Let Yw =∑y≤w ul(w)−l(y)Ty. Then {Yw}w∈W is also an A-base for the Hecke algebra. In this paper we give an explicit expression for certain Kazhdan–Lusztig basis elements Cw as A-linear combination of Yx’s in the Hecke algebra of type Dn. In fact, this gives also an explicit expression for certain Kazhdan–Lusztig basis elements Cw as A-linear combination of Tx ’s in the Hecke algebra of type Dn. Thus we describe also explicitly the Kazhdan–Lusztig polynomials for certain elements of the Weyl group. We study also the joint relation among some elements in W and some distinguished involutions with a-value n2 − 3n + 3 in the Weyl group of type Dn.

Weyl group, Hecke algebra, Distinguished involution

上传时间

2007年03月02日

【期刊论文】Cartan matrix over the 0-Hecke algebra of type F4

陈承东, Chen Cheng-Dong, Qian Jin

C. Cheng-Dong, Q. Jin. Journal of Algebra 252 (2002) 84-94,-0001,():

-1年11月30日

摘要

Let (W, S) be the finite Weyl group with S as its Coxeter generating set. For w ∈W, let R(w) = {si ∈ S | l(wsi) < l(w)} and L(w) = {si ∈ S | l(siw) < l(w)}, where we denote by l(w) the minimal length of an expression of w as a product of simple reflections. To any Weyl group one can associate a corresponding finite-dimensional algebra called 0-Hecke algebra H where K is any field. Norton [J. Austral. Math. Soc. Ser. A 27 (1979)337–357] pointed out that the principal indecomposable modules and the irreduciblemodules over the 0-Hecke algebra H parametrized by a subset J of S. We denote by U(Jˆ) and M(Jˆ) respectively the principal indecomposable module and the irreducible module parametrized by J . For two subset J , L of S, let CJL = the number of times M(L) is a composition factor of U(Jˆ). Norton [J. Austral. Math. Soc. Ser. A 27 (1979)337–357] shown that CJL = |YL ∩ (YJ )−1| where YL = {w ∈W|R(w) = L} and(YJ)−1 = {w ∈W | L(w) = J}. In this article, we describe explicitly CJL for the 0-Hecke algebra of type F4 by applying the canonical expression of every element in theWeyl group of type F4. Thus we determine the Cartan matrix over the 0-Hecke algebra of type F4.

Hecke algebra, Principal indecomposable module, Composition factor

上传时间

2007年03月02日

【期刊论文】On certain distinguished involutions in the Weyl group of type Dn

陈承东, Chen Cheng-dong, Liu Jia-chun

C. Cheng-dong, L. Jia-chun. Journal of Algebra 274 (2004) 347-372,-0001,():

-1年11月30日

摘要

Let (W, S) be a Weyl group. Let A = Z[u, u−1] be the Laurent polynomial ring in an indeterminate u. Kazhdan and Lusztig [Invent. Math. 33 (1979) 165–184] introduced two A-bases {Tw}w∈W and {Cw}w∈W for the Hecke algebra H Then associated to W. Let Yw =∑y≤w ul(w)−l(y)Ty . {Yw}w∈W is also an A-basis for the Hecke algebra. In this paper we assume W of type Dn and we express certain Kazhdan–Lusztig basis elements Cw as A-linear combination of Yx’s. This in turn gives an explicit expression for certain Kazhdan–Lusztig basis elements Cw as A-linear combination of Tx ’s. Thus we describe explicitly the Kazhdan–Lusztig polynomials for certain pairs of elements of W. We also study the joint relation among some elements in W. In particular, we find certain distinguished involutions in the two-sided cell Ωt of W with a-value 1/2(n2 − n + 4t2 − 2t) for 1 ≤ 2t ≤ n and n even (1/2 (n2 − n + 4t2 + 2t) for n odd), where the two-sided cell Ωt does not contain the longest element (w0)J in subgroup WJ of W for any J ⊂ S.

Hecke algebra, Weyl group, Two-sided cell

上传时间

2007年03月02日

【期刊论文】Expression of certain Kazhdan–Lusztig basis elements Cw over the Hecke algebra of type An

陈承东, Chen Cheng-Dong, Li Feng

C. Cheng-Dong L. Feng. Journal of Algebra 255 (2002) 174-181,-0001,():

-1年11月30日

摘要

In this paper we determine expression of Kazhdan–Lusztig basis elements Cw over the Hecke Algebra of Type An where w = a(j, i) is an element in Weyl group of type An. We also find joined relation of some elements in W. 2002 Elsevier Science (USA). All rights reserved.

Hecke algebra, Kazhdan–Lusztig basis, Weyl group

合作学者