您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者31条结果 成果回收站

上传时间

2020年10月16日

【期刊论文】Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1

Nature Cell Biology ,2017,19():1274–1285

2017年09月11日

摘要

Metastatic cancer is a systemic disease, and metastasis determinants might elicit completely different effects in various target organs. Here we show that tumour-secreted DKK1 is a serological marker of breast cancer metastasis organotropism and inhibits lung metastasis. DKK1 suppresses PTGS2-induced macrophage and neutrophil recruitment in lung metastases by antagonizing cancer cell non-canonical WNT/PCP–RAC1–JNK signalling. In the lungs, DKK1 also inhibits WNT/Ca2+–CaMKII–NF-κB signalling and suppresses LTBP1-mediated TGF-β secretion of cancer cells. In contrast, DKK1 promotes breast-to-bone metastasis by regulating canonical WNT signalling of osteoblasts. Importantly, targeting canonical WNT may not be beneficial to treatment of metastatic cancer, while combinatory therapy against JNK and TGF-β signalling effectively prevents metastasis to both the lungs and bone. Thus, DKK1 represents a class of Janus-faced molecules with dichotomous roles in organotropic metastasis, and our data provide a rationale for new anti-metastasis approaches.

0

上传时间

2020年10月16日

【期刊论文】The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis

Oncogene ,2016,36():pages989–9

2016年09月19日

摘要

Reprogrammed metabolism is one of the hallmarks of cancer. The dysregulation of glycolysis in cancer has been heavily studied. However, it remains largely unclear how other metabolic processes are regulated in cancer cells. Here we show that microRNA-182 (miR-182) suppresses pyruvate dehydrogenase (PDH) kinase 4 (PDK4) and promotes lung tumorigenesis. miR-182 is dysregulated and inversely correlated with PDK4 in human lung adenocarcinomas. The miR-182-PDK4 axis regulates lung cancer cell growth by modulating the activity of PDH, the gatekeeping enzyme of pyruvate flux into acetyl-CoA, and subsequently de novo lipogenesis of cancer cells. Suppression of lipogenesis by silencing ATP citrate lyase (ACLY) and fatty acid synthase (FASN) or by chemical inhibitors diminishes the effects of miR-182-PDK4 in tumor growth. Alteration of de novo lipogenesis also affects reactive oxygen species (ROS) production and the downstream JNK signaling pathway. Hence, our work suggests that the miR-182-PDK4 axis is a crucial regulator of cancer cell metabolism and a potential target for antitumor therapy.

0

上传时间

2020年10月19日

【期刊论文】A highly sensitive and specific system for large-scale gene expression profiling

BMC Genomics ,2008,9():9

2008年01月10日

摘要

Background Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed. Results By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (n = 100) or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100) and a large number (10,000) of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material. Conclusion Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.

0

上传时间

2020年10月16日

【期刊论文】Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis

Cell Death & Disease volume,2016,7():e2508

2016年12月01日

摘要

Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.

0

上传时间

2020年10月16日

【期刊论文】YAP Suppresses Lung Squamous Cell Carcinoma Progression via Deregulation of the DNp63–GPX2 Axis and ROS Accumulation

Cancer Res,2017,77(21):5769–81

2017年11月01日

摘要

Lung squamous cell carcinoma (SCC), accounting for approximately 30% of non–small cell lung cancer, is often refractory to therapy. Screening a small-molecule library, we identified digitoxin as a high potency compound for suppressing human lung SCC growth in vitro and in vivo. Mechanistic investigations revealed that digitoxin attenuated YAP phosphorylation and promoted YAP nuclear sequestration. YAP activation led to excessive accumulation of reactive oxygen species (ROS) by downregulating the antioxidant enzyme GPX2 in a manner related to p63 blockade. In patient-derived xenograft models, digitoxin treatment efficiently inhibited lung SCC progression in correlation with reduced expression of YAP. Collectively, our results highlight a novel tumor-suppressor function of YAP via downregulation of GPX2 and ROS accumulation, with potential implications to improve precision medicine of human lung SCC.

0

合作学者

  • 暂无合作作者