您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者31条结果 成果回收站

上传时间

2020年10月19日

【期刊论文】Metadherin: An emerging key regulator of the malignant progression of multiple cancers

Thorac Cancer,2011,2(4):143-148

2011年07月07日

摘要

We and others recently identified the gene metadherin (MTDH) as a functional driver in multiple aspects of cancer progression. It is overexpressed in cancer cells originating from a variety of tissues, partially due to DNA amplification of the chromosomal 8q22 region where this gene resides. The rapidly accumulated data from MTDH studies of the past several years have documented its role in tumorigenesis, angiogenesis, cell proliferation, survival, anchorage‐independent growth, metastasis and chemoresistance. In particular, it simultaneously helps the primary tumor cells to survive conventional chemotherapy and spread to distant organs, both of which are major contributors to cancer therapy failure and ultimately patient death. The efforts to elucidate the molecular mechanism of MTDH functions led to observations indicating its involvement in several prominent cancer‐related signaling pathways including Ras, c‐Myc, PI3K/AKT, NF‐κB, Wnt/β‐catenin, and more recently, microRNA machinery. Herein we will briefly summarize the studies that establish MTDH as a promising target for cancer therapeutics.

Astrocyte elevated gene 1, chemoresistance, metastasis, metadherin, multifunctional gene, tumor progression

0

上传时间

2020年10月19日

【期刊论文】ACAP4 cooperates with GRB2 to orchestrate EGF-stimulated integrin beta1 recycling in cell migration

The Journal of Biological Chemistry,2011,286():43735-4374

2011年10月25日

摘要

ARF6 GTPase is an important regulator of membrane trafficking and actin-based cytoskeleton dynamics active at the leading edge of migrating cells. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Our recent proteomic analyses of ARF6 effectors have identified a novel ARF6 GTPase-activating protein, ACAP4, essential for EGF-induced cell migration. However, molecular mechanisms underlying ACAP4-mediated cell migration has remained elusive. Here we show that ACAP4 regulates integrin β1 dynamics during EGF-stimulated cell migration by interaction with Grb2. Our biochemical study shows that EGF stimulation induces phosphorylation of tyrosine 733 which enables ACAP4 to bind Grb2. This interaction of ACAP4 with Grb2 regulates integrin β1 recycling to the plasma membrane. Importantly, knockdown of ACAP4 by siRNA or overexpression of ACAP4 decreased recycling of integrin β1 to the plasma membrane and reduced integrin-mediated cell migration. Taken together, these results suggest a novel function for ACAP4 in the regulation of cell migration through controlling integrin β1 dynamics.

Cell invasion, Cell migration, Cell motility, GTPase, phosphorylation, ACAP4, ARF6, EGF, Integrin, ezrin

0

上传时间

2020年10月19日

【期刊论文】Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis

Cell Res.,2012,22(9):1356–1373

2012年06月12日

摘要

Bone metastasis is a frequent complication of breast cancer and a common cause of morbidity and mortality from the disease. During metastasis secreted proteins play crucial roles in the interactions between cancer cells and host stroma. To characterize the secreted proteins that are associated with breast cancer bone metastasis, we preformed a label-free proteomic analysis to compare the secretomes of four MDA-MB-231 (MDA231) derivative cell lines with varied capacities of bone metastasis. A total of 128 proteins were found to be consistently up-/down-regulated in the conditioned medium of bone-tropic cancer cells. The enriched molecular functions of the altered proteins included receptor binding and peptidase inhibition. Through additional transcriptomic analyses of breast cancer cells, we selected cystatin E/M (CST6), a cysteine protease inhibitor down-regulated in bone-metastatic cells, for further functional studies. Our results showed that CST6 suppressed the proliferation, colony formation, migration and invasion of breast cancer cells. The suppressive function against cancer cell motility was carried out by cancer cell-derived soluble CST6. More importantly, ectopic expression of CST6 in cancer cells rescued mice from overt osteolytic metastasis and deaths in the animal study, while CST6 knockdown markedly enhanced cancer cell bone metastasis and shortened animal survival. Overall, our study provided a systemic secretome analysis of breast cancer bone tropism and established secreted CST6 as a bona fide suppressor of breast cancer osteolytic metastasis.

breast cancer,, bone metastasis,, secretome,, proteomics,, cystatin,, CST6

0

上传时间

2020年10月19日

【期刊论文】Transcriptional Network Analysis Identifies BACH1 as a Master Regulator of Breast Cancer Bone Metastasis

The Journal of Biological Chemistry,2012,287(): 33533-335

2012年08月08日

摘要

The application of functional genomic analysis of breast cancer metastasis has led to the identification of a growing number of organ-specific metastasis genes, which often function in concert to facilitate different steps of the metastatic cascade. However, the gene regulatory network that controls the expression of these metastasis genes remains largely unknown. Here, we demonstrate a computational approach for the deconvolution of transcriptional networks to discover master regulators of breast cancer bone metastasis. Several known regulators of breast cancer bone metastasis such as Smad4 and HIF1 were identified in our analysis. Experimental validation of the networks revealed BACH1, a basic leucine zipper transcription factor, as the common regulator of several functional metastasis genes, including MMP1 and CXCR4. Ectopic expression of BACH1 enhanced the malignance of breast cancer cells, and conversely, BACH1 knockdown significantly reduced bone metastasis. The expression of BACH1 and its target genes was linked to the higher risk of breast cancer recurrence in patients. This study established BACH1 as the master regulator of breast cancer bone metastasis and provided a paradigm to identify molecular determinants in complex pathological processes.

Bone, Breast Cancer, Cancer, Hypoxia, Metastasis, SMAD Transcription Factor, Transcription Factors

0

上传时间

2020年10月19日

【期刊论文】The Oncogene Metadherin Modulates the Apoptotic Pathway Based on the Tumor Necrosis Factor Superfamily Member TRAIL (Tumor Necrosis Factor-related Apoptosis-inducing Ligand) in Breast Cance

The Journal of Biological Chemistry,2013,288(): 9396-9407

2013年02月13日

摘要

Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.

Apoptosis, Breast Cancer, Cancer Biology, Cancer Therapy, Metastasis, Oncogene, Metadherin

0

合作学者

  • 暂无合作作者