您当前所在位置: 首页 > 学者
在线提示

恭喜!关注成功

在线提示

确认取消关注该学者?

邀请同行关闭

只需输入对方姓名和电子邮箱,就可以邀请你的同行加入中国科技论文在线。

真实姓名:

电子邮件:

尊敬的

我诚挚的邀请你加入中国科技论文在线,点击

链接,进入网站进行注册。

添加个性化留言

已为您找到该学者12条结果 成果回收站

上传时间

2020年11月04日

【期刊论文】Decoupling noise and features via weighted ℓ1-analysis compressed sensing

ACM Transactions on Graphics,2014,33(2):

2014年04月01日

摘要

Many geometry processing applications are sensitive to noise and sharp features. Although there are a number of works on detecting noise and sharp features in the literature, they are heuristic. On one hand, traditional denoising methods use filtering operators to remove noise, however, they may blur sharp features and shrink the object. On the other hand, noise makes detection of features, which relies on computation of differential properties, unreliable and unstable. Therefore, detecting noise and features on discrete surfaces still remains challenging. In this article, we present an approach for decoupling noise and features on 3D shapes. Our approach consists of two phases. In the first phase, a base mesh is estimated from the input noisy data by a global Laplacian regularization denoising scheme. The estimated base mesh is guaranteed to asymptotically converge to the true underlying surface with probability one as the sample size goes to infinity. In the second phase, an ℓ1-analysis compressed sensing optimization is proposed to recover sharp features from the residual between base mesh and input mesh. This is based on our discovery that sharp features can be sparsely represented in some coherent dictionary which is constructed by the pseudo-inverse matrix of the Laplacian of the shape. The features are recovered from the residual in a progressive way. Theoretical analysis and experimental results show that our approach can reliably and robustly remove noise and extract sharp features on 3D shapes.

0

上传时间

2020年11月04日

【期刊论文】Cost-effective printing of 3D objects with skin-frame structures

ACM Transactions on Graphics,2013,32(6):

2013年11月01日

摘要

3D printers have become popular in recent years and enable fabrication of custom objects for home users. However, the cost of the material used in printing remains high. In this paper, we present an automatic solution to design a skin-frame structure for the purpose of reducing the material cost in printing a given 3D object. The frame structure is designed by an optimization scheme which significantly reduces material volume and is guaranteed to be physically stable, geometrically approximate, and printable. Furthermore, the number of struts is minimized by solving an l0 sparsity optimization. We formulate it as a multi-objective programming problem and an iterative extension of the preemptive algorithm is developed to find a compromise solution. We demonstrate the applicability and practicability of our solution by printing various objects using both powder-type and extrusion-type 3D printers. Our method is shown to be more cost-effective than previous works.

0

上传时间

2020年11月04日

【期刊论文】Semantic decomposition and reconstruction of residential scenes from LiDAR data

ACM Transactions on Graphics,2013,42(4):

2013年07月01日

摘要

We present a complete system to semantically decompose and reconstruct 3D models from point clouds. Different than previous urban modeling approaches, our system is designed for residential scenes, which consist of mainly low-rise buildings that do not exhibit the regularity and repetitiveness as high-rise buildings in downtown areas. Our system first automatically labels the input into distinctive categories using supervised learning techniques. Based on the semantic labels, objects in different categories are reconstructed with domain-specific knowledge. In particular, we present a novel building modeling scheme that aims to decompose and fit the building point cloud into basic blocks that are block-wise symmetric and convex. This building representation and its reconstruction algorithm are flexible, efficient, and robust to missing data. We demonstrate the effectiveness of our system on various datasets and compare our building modeling scheme with other state-of-the-art reconstruction algorithms to show its advantage in terms of both quality and speed.

0

上传时间

2020年11月04日

【期刊论文】Multi-scale partial intrinsic symmetry detection

ACM Transactions on Graphics,2012,31(6):

2012年11月01日

摘要

We present an algorithm for multi-scale partial intrinsic symmetry detection over 2D and 3D shapes, where the scale of a symmetric region is defined by intrinsic distances between symmetric points over the region. To identify prominent symmetric regions which overlap and vary in form and scale, we decouple scale extraction and symmetry extraction by performing two levels of clustering. First, significant symmetry scales are identified by clustering sample point pairs from an input shape. Since different point pairs can share a common point, shape regions covered by points in different scale clusters can overlap. We introduce the symmetry scale matrix (SSM), where each entry estimates the likelihood two point pairs belong to symmetries at the same scale. The pair-to-pair symmetry affinity is computed based on a pair signature which encodes scales. We perform spectral clustering using the SSM to obtain the scale clusters. Then for all points belonging to the same scale cluster, we perform the second-level spectral clustering, based on a novel point-to-point symmetry affinity measure, to extract partial symmetries at that scale. We demonstrate our algorithm on complex shapes possessing rich symmetries at multiple scales.

0

上传时间

2020年11月04日

【期刊论文】Parametric reshaping of human bodies in images

ACM Transactions on Graphics,2010,29(4):

2010年07月01日

摘要

We present an easy-to-use image retouching technique for realistic reshaping of human bodies in a single image. A model-based approach is taken by integrating a 3D whole-body morphable model into the reshaping process to achieve globally consistent editing effects. A novel body-aware image warping approach is introduced to reliably transfer the reshaping effects from the model to the image, even under moderate fitting errors. Thanks to the parametric nature of the model, our technique parameterizes the degree of reshaping by a small set of semantic attributes, such as weight and height. It allows easy creation of desired reshaping effects by changing the full-body attributes, while producing visually pleasing results even for loosely-dressed humans in casual photographs with a variety of poses and shapes.

0

合作学者

  • 暂无合作作者